

Gear Design Calculations: A **Practical Guide**

This guide explains key gear design principles and calculations.

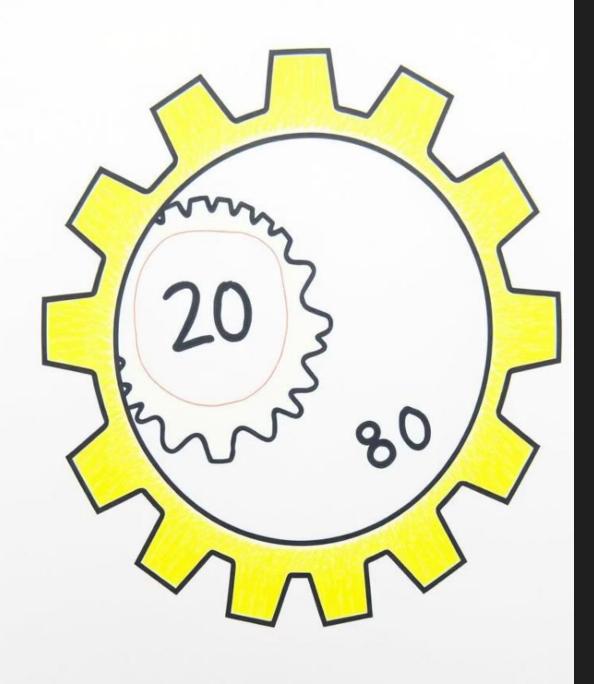
Learn how to optimize gear performance for efficiency and durability.

by Dr. Ayad alwaise

Gear Design Fundamentals

Key Terminology

- Pitch Diameter
- Module
- Pressure Angle


Gear Types

- Spur
- Helical
- Bevel
- Worm

Materials

- Steel Alloys (AISI 4140)
- Plastics (Nylon 66)

Calculating Gear Ratio

1

Definition

Ratio of driven to driving gear teeth count.

2

Formula

Gear Ratio (GR) = N_2 / N_1

Example

20-tooth drives 80-tooth gear. GR = 80 / 20 = 4

4

Impact

Controls speed, torque, direction.

Determining Pitch Diameter

Definition

Diameter of the pitch circle.

Formula

Pitch Diameter (D) = Number of Teeth (N) / Diametral Pitch (P)

Example

40 teeth, 10 teeth/inch pitch: D = 40 / 10 = 4 inches

Use

Key for calculating gear center distances.

Calculating Center Distance

Definition	Formula	Example	Importance
Distance between centers of two meshing gears.	$(D_1 + D_2) / 2$	D_1 =4 inches, D_2 =6 inches. Center Distance = 5 inches	Ensures correct meshing without contact
			interference.

Torque and Power Transmission

1 Torque Formula

 $T = (Power \times 63025) / RPM$

3 Considerations

Material strength, safety, dynamic loads.

2 Example

5 HP, 1750 RPM: Torque = 180.07 in-lbs

4 Losses

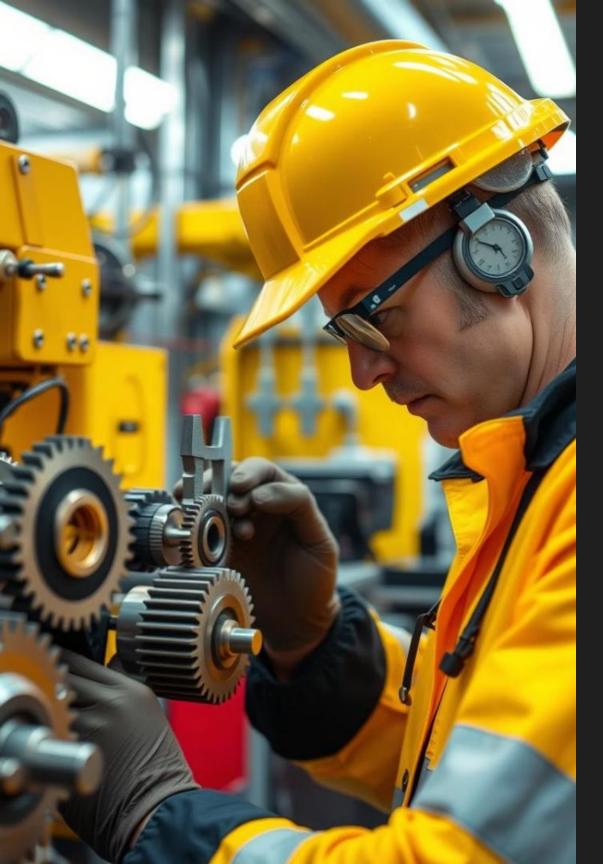
Power loss ~1-2% per gear mesh.

Gear Design Considerations

Material

Hardness, tensile strength, wear resistance.

Lubrication


Choose viscosity and method: splash or forced.

Load Analysis

Static/dynamic loads, stress concentrations.

Backlash

Allow clearance 0.003-0.005 inches between teeth.

Conclusion: Optimizing Gear Performance

Key Calculations

Gear ratio, pitch diameter, center distance, torque.

Applications

Automotive, aerospace, robotics uses.

Maintenance

Regular inspection and lubrication improve lifespan.