Shear Stress

$$\tau = \frac{V}{A}$$

where V is the resultant shearing force which passes through the centroid of the area A being sheared.

Solution to Problem 115 Shear Stress

Strength of Materials 4th Edition by Pytel and Singer

Given:

Required diameter of hole = 20 mm Thickness of plate = 25 mm Shear strength of plate = 350 MN/m^2

Required: Force required to punch a 20-mm-diameter hole

Solution 115

The resisting area is the shaded area along the perimeter and the shear force V is equal to the punching force P.

 $V = \tau A$ $P = 350 [\pi (20)(25)]$ P = 549778.7 N $P = 549.8 \text{ kN} \rightarrow answer$

Solution to Problem 116 Shear Stress

Strength of Materials 4th Edition by Pytel and Singer

Given:

Shear strength of plate = 40 ksi Allowable compressive stress of punch = 50 ksi The figure below:

Required:

- a. Maximum thickness of plate to punch a 2.5 inches diameter hole
- b. Diameter of smallest hole if the plate is 0.25 inch thick

Solution 116

a. Maximum thickness of plate: Based on puncher strength: $P = \sigma A$ $P = 50 \left[\frac{1}{4} \pi (2.52) \right]$ $P = 78.125 \pi \text{ kips } \rightarrow Equivalent shear force of the plate}$

Based on shear strength of plate: $V = \tau A \rightarrow V = P$ $78.125\pi = 40 [\pi(2.5t)]$

t = 0.781 inch \rightarrow answer

b. Diameter of smallest hole: Based on compression of puncher: $P = \sigma A$ $P = 50(\frac{1}{4}\pi d^2)$ $P = 12.5\pi d^2 \rightarrow Equivalent shear force for plate$

Based on shearing of plate: $V = \tau A \rightarrow V = P$ $12.5\pi d^2 = 40[\pi d(0.25)]$ d = 0.8 in \rightarrow answer

Solution to Problem 117 Shear Stress

Strength of Materials 4th Edition by Pytel and Singer

Given: Force P = 400 kNShear strength of the bolt = 300 MPa The figure below:

Required: Diameter of the smallest bolt

Solution 117 The bolt is subject to double shear. $V = \tau A$ $400(1000) = 300[2(\frac{1}{4}\pi d^2)]$ $d = 29.13 \text{ mm} \rightarrow answer$

Solution to Problem 118 Shear Stress

Strength of Materials 4th Edition by Pytel and Singer

Given: Diameter of pulley = 200 mm Diameter of shaft = 60 mm Length of key = 70 mm Applied torque to the shaft = $2.5 \text{ kN} \cdot \text{m}$ Allowable shearing stress in the key = 60 MPa

Required: Width b of the key

Solution 118

Solution to Problem 119 Shear Stress

Strength of Materials 4th Edition by Pytel and Singer

Given: Diameter of pin at B = 20 mm

Required: Shearing stress of the pin at B

Solution 119

From the FBD: $\Sigma M_C = 0$ $0.25R_{BV} = 0.25(40 \sin 35^\circ) + 0.2(40 \cos 35^\circ)$ $R_{BV} = 49.156 \text{ kN}$

 $\Sigma F_H = 0$ $R_{BH} = 40 \cos 35^\circ$ $R_{BH} = 32.766 \text{ kN}$ $R_B = \sqrt{R_{BH}^2 + R_{BV}^2}$ $R_B = \sqrt{32.766^2 + 49.156^2}$ $R_B = 59.076 \text{ kN} \rightarrow \text{shear force of pin at B}$

 $V_B = \tau_B A \rightarrow \text{double shear}$ 59.076(1000) = $\tau_B \left\{ 2 \left[\frac{1}{4} \pi (20^2) \right] \right\}$ $\tau_B = 94.02 \text{ MPa} \rightarrow \text{answer}$

Solution to Problem 120 Shear Stress

Strength of Materials 4th Edition by Pytel and Singer

Given: Unit weight of each member = 200 lb/ft Maximum shearing stress for pin at A = 5 000 psi

Required: The smallest diameter pin that can be used at A

Solution 120 For member AB:

FBD of Member AB

Length,
$$L_{AB} = \sqrt{4^2 + 4^2} = 5.66$$
 ft
Weight, $W_{AB} = 5.66(200) = 1\,132$ lb

 $\Sigma M_A = 0$

$$4R_{BH} + 4R_{BV} = 2W_{AB}$$

$$4R_{BH} + 4R_{BV} = 2(1132)$$

$$R_{BH} + R_{BV} = 566 \rightarrow \text{Equation (1)}$$

For member BC:

FBD of member BC

Length,
$$L_{BC} = \sqrt{3^2 + 6^2} = 6.71$$
 ft
Weight, $W_{BC} = 6.71(200) = W_{BC} = 1342$ lb

$$\sum M_{C} = 0$$

$$6R_{BH} = 1.5W_{BC} + 3R_{BV}$$

$$6R_{BH} - 3R_{BV} = 1.5(1342)$$

$$2R_{BH} - R_{BV} = 671 \rightarrow \text{Equation (2)}$$

Add equations (1) and (2) $R_{BH} + R_{BV} = 566 \rightarrow \text{Equation (1)}$ $R_{BH} - R_{BV} = 671 \rightarrow \text{Equation (2)}$ $3R_{BH} + R_{BV} = 1237$ $R_{BH} = 412.33 \text{ lb}$

From equation (1):

 $412.33 + R_{BV} = 566$ $R_{BV} = 153.67$ lb

From the FBD of member AB $\Sigma F_H = 0$ $R_{AH} = R_{BH} = 412.33$ lb

$$\Sigma F_{V} = 0$$

 $R_{AV} + R_{BV} = W_{AB}$
 $R_{AV} + 153.67 = 1132$
 $R_{AV} = 978.33$ lb

$$R_A = \sqrt{R_{AH}^2 + R_{AV}^2}$$

$$R_A = \sqrt{412.33^2 + 978.33^2}$$

$$R_A = 1061.67 \,\text{lb} \longrightarrow \text{shear force of pin at A}$$

 $V = \tau A$ 1061.67 = 5000($\frac{1}{4}\pi d^2$) d = 0.520 in \rightarrow answer

Solution to Problem 121 Shear Stress

Strength of Materials 4th Edition by Pytel and Singer

Given:

Allowable shearing stress in the pin at B = 4000 psi Allowable axial stress in the control rod at C = 5000 psi Diameter of the pin = 0.25 inch Diameter of control rod = 0.5 inch Pin at B is at single shear

Required: The maximum force P that can be applied by the operator

Solution 121

$$\sum M_B = 0$$

6P = 2T sin 10° \rightarrow Equation (1)

$$\begin{split} \Sigma F_H &= 0 \\ B_H &= T cos 10^\circ \end{split}$$

From Equation (1),
$$T = \frac{3P}{\sin 10^\circ}$$

$$B_{H} = \left(\frac{3P}{\sin 10^{\circ}}\right) \cos 10^{\circ}$$
$$B_{H} = 3 \cot 10^{\circ} P$$
$$\Sigma F_{V} = 0$$
$$B_{V} = T \sin 10^{\circ} + P$$

From Equation (1), $T \sin 10^\circ = 3P$

$$B_{V} = 3P + P$$

$$B_{V} = 4P$$

$$R_{B}^{2} = B_{H}^{2} + B_{V}^{2}$$

$$R_{B}^{2} = (3 \cot 10^{\circ} P)^{2} + (4P)^{2}$$

$$R_{B}^{2} = 305.47P^{2}$$

$$R_{B} = 17.48P$$

$$P = \frac{R_{B}}{17.48} \rightarrow \text{Equation (2)}$$

Based on tension of rod (equation 1): $P = \frac{1}{3}T \sin 10^{\circ}$ $P = \frac{1}{3}[5000 \times \frac{1}{4}\pi (0.5)^{2}] \sin 10^{\circ}$ P = 56.83 lb

Based on shear of rivet (equation 2): $P = \frac{4000[\frac{1}{4}\pi(0.25)^{2}]}{17.48}$ P = 11.23 lb

Safe load $P = 11.23 \text{ lb} \rightarrow answer$

Solution to Problem 122 Shear Stress

Strength of Materials 4th Edition by Pytel and Singer

Given:

Width of wood = WThickness of wood = tAngle of Inclination of glued joint = θ Cross sectional area = A

Required: Show that shearing stress on glued joint $\tau = P \sin 2\theta / 2A$

Solution 122

Shear area, $A_{\text{shear}} = t(w \csc \theta)$ Shear area, $A_{\text{shear}} = tw \csc \theta$ Shear area, $A_{\text{shear}} = A \csc \theta$ Shear force, $V = P \cos \theta$

$$V = \tau A_{\text{shear}}$$

$$P \cos \theta = \tau (A \csc \theta)$$

$$\tau = \frac{P \sin \theta \cos \theta}{A}$$

$$\tau = \frac{P(2 \sin \theta \cos \theta)}{2A}$$

$$\tau = P \sin 2\theta / 2A \text{ (ok!)}$$

Solution to Problem 123 Shear Stress

Strength of Materials 4th Edition by Pytel and Singer