Course Outcome 2 (CO2)

Students should be able to understand and
evaluate one-dimensional heat flow and In
different geometries

Lesson Outcomes from CO2 (Part 1)

e To derive the equation for temperature
distribution in various geometries



BOUNDARY AND INITIAL CONDITIONS

A heat transfer problem must equipped with a description of the thermal

conditions at the bounding surfaces of the medium.

Boundary conditions: The mathematical expressions of the thermal

conditions at the boundaries.

The initial condition specified at time t =0, ,
which is a mathematical expression for the
temperature distribution of the medium
initially.

TT _—r Some solutions of
Y =
/‘f
50°C 9
L\S' 15°C

—— The only solution
7 x that satisfies
the conditions
T(0) = 50°C
and T(L) = 15°C.

FIGURE 2-26

To describe a heat transfer problem
completely, two boundary conditions
must be given for each direction along
which heat transfer 1s significant.




Boundary Conditions

Specified Temperature Boundary Condition
Specified Heat Flux Boundary Condition
Convection Boundary Condition

Radiation Boundary Condition

Interface Boundary Conditions

Generalized Boundary Conditions



Boundary Conditions

Specified Temperature Boundary Condition



1 Specified Temperature Boundary Condition

. . /,,a-——} {—a\
For one-dimensional heat transfer through .
: . 150°C T(x, 1) 70°C
a plane wall of thickness L, the specified
temperature boundary conditions can be
expressed as 1 T
100, 1) = 150°C
70,1 =T, L. 1) =70°C
[, n =1 FIGURE 2-27

Specified temperature boundary
conditions on both surfaces
of a plane wall.

where T, and T, are the specified

temperatures at surfaces at x = 0 and
X = L, respectively.

The specified temperatures can be
constant, which is the case for steady
heat conduction, or may vary with time. >



Boundary Conditions

Specified Heat Flux Boundary Condition



2 Specified Heat Flux Boundary Condition

The heat flux in the positive x-direction anywhere in the
medium, including the boundaries

= 9T _ Heat flux in the W/m?) Heat |
{ Ox positive x — direction | flux | Conduction
Heat

Conduction| flux

) m—)

oI,y _ .
g dx -

0¢ TL -

FIGURE 2-28

Specified heat flux boundary
conditions on both surfaces
of a plane wall.




Special Case 1: Insulated Boundary

A well-insulated surface is a surface with
heat flux is zero. Then the boundary
condition on a perfectly insulated surface e L o

Insulation T(x. 1) 60°C
(at x = 0,) can be expressed as

()| e » >
[ X
070, 1) _ 070, 1)
k ax = () 01 ax = () aT. 1 _0
dx
T(L, 1) =60"C
FIGURE 2-29

A plane wall with insulation
and specified temperature
boundary conditions.



Special Case 2: Thermal Symmetry

Two surfaces of thickness L exposed to the same

thermal conditions, and thus the temperature

distribution in one half of the plate is the same as

that in the other half. Zero

slope

— Temperature
Thus, the heat transfer in this plate possesses distribution
thermal symmetry about the center plane at x = L/2. | {51'1*""‘:"“"‘"'[“
about center
Therefore, the center plane can be viewed as an plane)
insulated surface, and the thermal condition at

this plane of symmetry can be expressed as

,— Center plane

() * L >
X

L L

aT(L/2. 1) dI(L/2.1) _ 0
- = () ) -
X ox

FIGURE 2-30

Thermal symmetry boundary
condition at the center plane
of a plane wall.
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Boundary Conditions

Convection Boundary Condition
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3 Convection Boundary Condition

The convection boundary conditions on both surfaces in the
figure can be expressed as:

Convection | Conduction

dT(0, t
X
h Conduction

~

)

Convection

1
7 S

JT(L. t)

dx

_k

.
L «x

FIGURE 2-32

Convection boundary conditions on
the two surfaces of a plane wall.

Heat conduction

at the surface in a

selected direction

dT(0, 1)

X

F{:.*T{L 7)

X

.

Heat convection
at the surface in
the same direction

h][Tx] - T“:}-. f}]

|
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Boundary Conditions

Radiation Boundary Condition
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4 Radiation Boundary Condition

Radiation boundary condition on a surface:

Heat conduction Radiation exchange
at the surface ina | =| at the surface in
 selected direction, . the same direction

The radiation boundary conditions in the figure
can be expressed as

adT(0, 1)
kY = o Ty — T, 1)1
dT(L. 1)
K X - E':JUIT{L~ ”4 o T.‘:lll[']'._-’]
(r.

Radiation | Conduction

. JT0, 1)
£0 [Th, | — 700, ] = —k ZSn L

dx
E] Eg

Tsur'r, 1 Tsurr, 2
Conduction | Radiation
JdT(L, t . .
K ) ey |T(L, 1 - TS

1 L—’

FIGURE 2-35

Radiation boundary conditions on
both surfaces of a plane wall.
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Boundary Conditions

Interface Boundary Conditions
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5 Interface Boundary Conditions

Interface boundary conditions are based Interface
on /
(1) two bodies must have the same Material Material

A B
temperature at the area of contact

(2) an interface surface cannot store any
energy, and thus the heat flux on the two

. : Tg(x, 1)
sides of an interface must be the same.

Ty(x, 1)

The boundary conditions at the interface Conduction | Conduction
of two bodies A and B in perfect contact at
X = X, can be expressed as T (xg. 1) dTgp(xq. 1)
kg — =y
dx dx
() e T
Txﬂ L x
Ty(xg, 1) = Th(xg, 1)
FIGURE 2-36
—k T4 1) = —k, T, 1) Boundary conditions at the interface
A X b ox

of two bodies in perfect contact.
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Boundary Conditions

Generalized Boundary Conditions
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6 Generalized Boundary Conditions

In general, however, a surface may involve convection,
radiation, and specified heat flux simultaneously.

The boundary condition in such cases is again obtained
from a surface energy balance, expressed as

Heat transfer Heat transfer
to the surface | = | from the surface
1n all modes 1in all modes
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EXAMPLE 2-8 Combined Convection and Radiation Condition

A spherical metal ball of radius r, is heated in an oven to a temperature of
300°C throughout and is then taken out of the oven and allowed to cool in am-
bient air at 7., = 27°C, as shown in Fig. 2-37. The thermal conductivity of the
ball material is k = 14.4 W/m-K, and the average convection heat transfer co-
efficient on the outer surface of the ball is evaluated to be h = 25 W/m?-K. The
emissivity of the outer surface of the ball is e = 0.6, and the average temper-
ature of the surrounding surfaces is T,, = 290 K. Assuming the ball is cooled
uniformly from the entire outer surface, express the initial and boundary con-
ditions for the cooling process of the ball.

SOLUTION The cooling of a hot spherical metal ball is considered. The initial
and boundary conditions are to be obtained. T, =27°C
Analysis The ball is initially at a uniform temperature and is cooled uniformly
from the entire outer surface. Therefore, this is a one-dimensional transient
heat transfer problem since the temperature within the ball changes with the
radial distance r and the time t. That is, T = T(r, #). Taking the moment
the ball is removed from the oven to be t = 0, the initial condition can be
expressed as

T, =300°C
T(r,0) = T, = 300°C

The problem possesses symmetry about the midpoint (r = 0) since the FIGURE 2-37
isotherms in this case are concentric spheres, and thus no heat is crossing the . (
midpoint of the ball. Then the boundary condition at the midpoint can be ex- Schematic for Example 2-8.

pressed as The heat conducted to the outer surface of the ball is lost to the environment

by convection and radiation. Then taking the direction of heat transfer to be
or the positive r direction, the boundary condition on the outer surface can be ex-
pressed as

IT(0, 1
LS

—k = h[T(r,) — T.] + eo[T(r,)* — T2

aT(r,, 1)
') G SuIT.

Discussion All the quantities in the above relations are known except the tem-

peratures and their derivatives at r = O and r,. Also, the radiation part of the

boundary condition is often ignored for simplicity by modifying the convection

heat transfer coefficient to account for the contribution of radiation. The convec-

tion coefficient h in that case becomes the combined heat transfer coefficient.
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EXAMPLE 2-9

Consider the south wall of a house that is L = 0.2 m thick. The outer surface
of the wall is exposed to solar radiation and has an absorptivity of « = 0.5 for
solar energy. The interior of the house is maintained at 7., = 20°C, while the
ambient air temperature outside remains at 7., = 5°C. The sky, the ground,
and the surfaces of the surrounding structures at this location can be modeled
as a surface at an effective temperature of Ty, = 255 K for radiation exchange
on the outer surface. The radiation exchange between the inner surface of
the wall and the surfaces of the walls, floor, and ceiling it faces is negligible.
The convection heat transfer coefficients on the inner and the outer surfaces of
the wall are h; = 6 W/m?.K and h, = 25 W/m?-K, respectively. The thermal
conductivity of the wall material is k = 0.7 W/m-K, and the emissivity of the
outer surface is e, = 0.9. Assuming the heat transfer through the wall to be
steady and one-dimensional, express the boundary conditions on the inner and
the outer surfaces of the wall.

Combined Convection, Radiation, and Heat Flux

SOLUTION The wall of a house subjected to solar radiation is considered. The
boundary conditions on the inner and outer surfaces of the wall are to be ob-
tained.

Analysis We take the direction normal to the wall surfaces as the x-axis with
the origin at the inner surface of the wall, as shown in Fig. 2-38. The heat
transfer through the wall is given to be steady and one-dimensional, and thus
the temperature depends on x only and not on time. That is, T = T(x).

The boundary condition on the inner surface of the wall at x = O is a typical
convection condition since it does not involve any radiation or specified heat
flux. Taking the direction of heat transfer to be the positive x-direction, the
boundary condition on the inner surface can be expressed as

dT(0)

=K dx

= h[T., — T(0)]

sky

Sun
Inner
surface
hy
T,
Convection | Conduction — Outer
— — surface
0 L i
FIGURE 2-38

Schematic for Example 2-9.

The boundary condition on the outer surface at x = O is quite general as it
involves conduction, convection, radiation, and specified heat flux. Again tak-
ing the direction of heat transfer to be the positive x-direction, the boundary
condition on the outer surface can be expressed as

dT(L)

_k dx B hz[T(L) N TXZ] ¥ 820[T(L)4 = T:k,\’] i aq.solur

where g, is the incident solar heat flux.

Discussion Assuming the opposite direction for heat transfer would give the
same result multiplied by —1, which is equivalent to the relation here. All the
quantities in these relations are known except the temperatures and their de-
rivatives at the two boundaries.
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EXAMPLE 2-10 Heat Conduction in a Plane Wall

Consider a large plane wall of thickness L = 0.2 m, thermal conductivity k =
1.2 W/m-K, and surface area A = 15 m?. The two sides of the wall are main-
tained at constant temperatures of 7, = 120°C and T, = 50°C, respectively, as
shown in Fig. 2-40. Determine (a) the variation of temperature within the wall
and the value of temperature at x = 0.1 m and (b) the rate of heat conduction
through the wall under steady conditions.

SOLUTION A plane wall with specified surface temperatures is given. The
variation of temperature and the rate of heat transfer are to be determined.
Assumptions 1 Heat conduction is steady. 2 Heat conduction is one-
dimensional since the wall is large relative to its thickness and the thermal
conditions on both sides are uniform. 3 Thermal conductivity is constant.
4 There is no heat generation.

Properties The thermal conductivity is given to be k = 1.2 W/m-K.

Analysis (a) Taking the direction normal to the surface of the wall to be the
x-direction, the differential equation for this problem can be expressed as

with boundary conditions

T(0) = T, = 120°C
T(L) = T, = 50°C

The differential equation is linear and second order, and a quick inspection of
It reveals that it has a single term involving derivatives and no terms involving
the unknown function T as a factor. Thus, it can be solved by direct integration.
MNoting that an integration reduces the order of a derivative by one, the general
solution of the differential equation above can be obtained by two simple suc-
cessive integrations, each of which introduces an integration constant.

Plane
wall
P T
T T,
0 I x
FIGURE 240

Schematic for Example 2-10.
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Integrating the differential equation once with respect to x yields

dT
o

where C; is an arbitrary constant. Notice that the order of the derivative went
down by one as a result of integration. As a check, if we take the derivative of
this equation, we will obtain the original differential equation. This equation is
not the solution yet since it involves a derivative.

Integrating one more time, we obtain
;"TI) = CII + Cz

which is the general solution of the differential equation (Fig. 2-41). The gen-
eral solution in this case resembles the general formula of a straight line whose
slope is C; and whose value at x = 0 is Cs. This is not surprising since the sec-
ond derivative represents the change in the slope of a function, and a zero sec-
ond derivative indicates that the slope of the function remains constant.
Therefore, any straight line is a solution of this differential equation.

The general solution contains two unknown constants C;, and C,, and thus
we need two equations to determine them uniguely and obtain the specific so-
lution. These equations are obtained by forcing the general solution to satisfy
the specified boundary conditions. The application of each condition yields one
equation, and thus we need to specify two conditions to determine the con-
stants C; and C..

When applying a boundary condition to an equation, all occurrences of the
dependent and independent variables and any derivatives are replaced by the
specified values. Thus the only unknowns in the resulting equations are the ar-
bitrary constants.

The first boundary condition can be interpreted as in the general solution, re-
place all the x's by zero and T(x) by T,. That is (Fig. 2-42),

T(ﬂ):C]XD+Cz — C2=T1

Differential equation:

d*T _ |
2 |

Integrate:
a1 _ e
dr
Integrate again.
Tix) =Cix + C,
General Arbitrary
solution constants

i J
FIGURE 2-41

Obtaining the general solution of a
simple second order differential

equation by integration.
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The second boundary condition can be interpreted as in the general solution,
replace all the x's by L and T(x) by T.. That is,

T, — T,
T(L) = ClL + Cl — T2 = C]L + Tl — C] = I
Substituting the C, and C, expressions into the general solution, we obtain
T'_- - T|
T(x) = — 7 x+ T, (2-56)

which is the desired solution since it satisfies not only the differential equation
but also the two specified boundary conditions. That is, differentiating
Eq. 2-56 with respect to x twice will give d2T/dx?, which is the given differential
equation, and substituting x = O and x = L into Eq. 2-56 gives T(0) = T; and
T(L) = T,, respectively, which are the specified conditions at the boundaries.

Substituting the given information, the value of the temperature at x =
0.1 m is determined to be

(50 — 120)°C
0.2m

(b) The rate of heat conduction anywhere in the wall is determined from
Fourier's law to be
. _ _.dr _ _ Tz_Tl_,Tl_Tz
Qv = e ey S
The numerical value of the rate of heat conduction through the wall is deter-
mined by substituting the given values to be
T, —T, (120 — 50)°C

= . 5 2 = !
7 (1.2 W/m-K)(15 m~) 02 m 6300 W

Discussion Note that under steady conditions, the rate of heat conduction
through a plane wall is constant.

T7(0.1 m) = (0.1 m) + 120°C = 85°C

(2-57)

0 = kA

ol N
Boundary condition: |
T =T,
General solution:
Mx)=Cix+C,

Applyving the boundary condition:

™, T
0o 0
Tl

Substituting:
(/,"TJ =Clx‘:}+ Cz—}C2=T1

5 It cannot involve x or T1x) after the
boundary condition is applied.

N3 y
FIGURE 242

When applying a boundary condition
to the general solution at a specified
point, all occurrences of the dependent
and independent variables should

be replaced by their specified

values at that point.
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