Cascading of channels:
If two channels are cascaded as shown, then, the overall transition matrix of the equivalent channel is the matrix multiplication

of the transitional prob of the two cascaded channels.
1. Channel 1 Y 1 Channel 2 !1
n_ | (nxm) matrix m| (mxr) matrix
;

P(Z/X) = P(Y/X) x P(Z/Y)
0.7

Example : Find the transition matrix p(Z/X) for the cascaded channel shown: =
Y1 -
i
; ) ; [ 21 22 ] .
¥/ X)y=x|08 D2 0O m'h:i}_:v(Z/Y):"2 _— X2
x2(03 0 0.7 ) \
w1 0] o Y
0.7 03]
08 02 0 0.76 024
(LI XY= 1 =
03 0 07 091 0.09
L l O -
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HW: For previous example, find P(Y) and P(Z) if P(X)=[ 0.7 0.3]



Entropies of continuous signals:

If x and y are continuous random variables, with probability density functions p(x) and p(y), then in analogy with discrete
sources the differential entropies of X & Y are given by:

H(X) = —fiooo p(x) log2 p(x)dx in bits/sample of the random variable x
HY) =-[>2,pW)Iog2 p(y)dy in bits/sample of the random variable x

And other entropies are also differential entropies and are given by:

H(X)Y) =- f f v (xy) log2 p (x,y)dxdy in bits/sample

H(Y/X) = —ff o v (x,y) log2 p(y/x)dxdy in bits/sample

H(X/Y) = —ff o v (x,y) log2 p(x/y)dxdy in bits/sample
— (oo p(xly) in bi

I(X)Y) = f f o p(xy) log2 ) dxdy in bits/sample

Note that all above entropies are differential entropies and not an absolute measure of information since all prob are in fact
prob. density functions.
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Channel capacity of continuous Gaussian channel:

Definition: A Gaussian channel is that channel affected by the Gaussian noise.
Review of Gaussian signal:
If the noise signal n(t) is Gaussian then its PDF(prob density function):

_ 1 -05(E?

e
o

where p is mean of n(t) and &2 is the variance of n(t). If n(t) is a thermal noise we can assume p=0 and the frequency

spectrum of this noise is flat over a wide range of frequencies as shown
| Gu(D)

Two-sided
spectrum

f
This has two sided power spectral density G, (f)=n/2 W/Hz and one-sided power spectral density G,(f)=n W/Hz
Gu(f

; n
One-sided
spectrum Ié/

From G,(f), we can find the noise power as N=1n BW in watts.

» f

BW
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Entropy of Gaussian noise:

Since the spectrum is flat, we call this noise white noise. This white noise affects the signal x(t) as additive term, i.e., the
received signal y(t)=x(t)+n(t). A very popular name of Additive, White, Gaussian, Noise (AWGN) is used for such thermal
noise. The figure below shows how this AWGN affects equiprobable bipolar £ A signal.

Time domain PDF function

A

— +A (
0.5 s

x(1) -A +A ¥ i

Entropy of Gaussian noise:

Mathematically, we can prove that if x(t) is a random variable, then the entropy of x is maximum if x(t) has Gaussian PDF. To
find this entropy, then (and assuming p.—O)

YLl ” s m
H(X)= Ip(x) In| e 7 ldx nats/sample ~ H(X) = x° p(x)dx

1
ali: 2
N2 O L g e =

But: Ix p(x)dx=mean squareof x= > +6" =06 and jp(x) o |

then H(X)=Inv27 60 +05=In+27 o+ /e

H(X)=In(VJ2m o) nats/sample
Or H(X) = logz(«/272z3 0) bits/sample EE426 Information Theory 40




Channel capacity of Gaussian channels

A Gaussian channel is a channel affected by Gaussian noise n(t). Then:
C=max[H(Y) - H(Y/X)], =max[receiver entropy - noise entropy]. It should be noted that, maximization is already included
when we take the case of Gaussian noise, then

C = log2 (\/ 2mte ay) ~log2 ( 2me o)

Using previous expression of H(X) for Gaussian signal for the signal y with variance ayz then for the noise n(t) with variance
o,’(noise power).

2
C = log2 (%) = %logZ (%) , but oy2 = ox2+ on2 sum of powers.

ox2= S=Signal power and on2= N= noise power. Then

C :1log2 gSJr—N :1log2 1 +§) bits per sample
For an analogue signal sampled at the Nycfuist ra e,z\f en the samplin requency is f= 2B samples/sec, where B is the
bandwidth of the signal, hence

C:%logz (1 +%)><ZB bits per sec or
C =B log2(1+SNR) bits per sec

This is a very important formula known as SHANNON EQUATION named after C.E. Shannon, it is sometimes

called Shannon- Hartly equation. "
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Notes on SHANNON EQUATION

1- Care must be taken regarding the units, here B is in Hz., SNR=signal to noise power ratio is in absolute, then, C is in bits/sec.
If SNR is given in dB, then: SNR(absolute)=10°1(SNRin dB)

2-The ratio [C/B]=log,(1+SNR) gives what is called channel utilization ratio ( bps per Hz) that increases with SNR as shown.

C/B
10
8

oON B O

-20 -10 0 10 20 30 SNR (dB)
3-The equation C=B log,(1+SNR) gives the maximum theoretical performance in terms of maximum bit rate that can be
transmitted over a channel having a bandwidth B and SNR ratio.

Example: Find the maximum theoretical information rate that can be transmitted over a telephone channel having 3.5KHz

bandwidth and 15dB SNR.

Solution:
C is the maximum theoretical information rate, using Shannon eq, then:

C=B log,(1+SNR)
where, SNR=15dB, changing into absolute SNR=10%1=31., then:

C =3500 log,(1+31)=17500bps.

EE426 Information Theory
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Example: A source produces 16 equiprobable symbols at a rate of 500 symbols/sec, check the possibility of transmitting this
rate over the telephone channel of previous example

Solution:

First, we find the rate of information from the source, which is the source entropy rate R(X):

R(X)= H(X)x rate of symbols.

H(X)=H(X) | max=log,16=4 bits/symbol (equiprobable case)

Then: R(X)=4 x 500= 2000 bps. Now since R(X) < 17500, then yes it is possible to transmit source output over this channel.

Example:
Find the minimum theoretical SNR required to transmit a compressed video information at a rate of 27Mbps over a channel
having 5MHz bandwidth.

Solution:

For the minimum theoretical SNR, then put C=source bit rate =27Mbps, then:
C =B log,(1+SNR)

27x 10° = 5x 10° log,(1+SNR),or

14SNR =24 ® SNR=41.2 absolute or SNR=16.1 dB

EE426 Information Theory
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Source Coding

Source Coding of Discrete Source

An important point in communications is the efficient representation of data generated by a discrete source. The process by
which this representation is accomplished is called source encoding. The device that performs the representation is called a
source encoder. - For the source encoder to be efficient, we require knowledge of the statistics of the source. In particular, if
some source symbols are known to be more probable than others, then we may exploit this feature in the generation of a
source code by assigning short code words to frequent source symbols, and long code words to rare source symbols. -

| rolled a 6 Person A transmits the
code for 6 to Person B That’s the
— code for 6!
)

O “110”
Re)

Person B

Person A

Code
1=001 4=100
2=010 5=101
3=011 6=110

Source coding does not change or alter the source entropy, i.e. the average number of information bits per source symbol. In
this sense source entropy is a fundamental property of the source. Thus the aim of source coding is to represent information
as accurately as possible using as few bits as possible and in order to do so redundancy from the source needs to be

removed. This will reduce the number of symbols in a message to the minimum necessary to represent the information in

the message. 44 EE426 Information Theory




Source Coding

Source Coding of Discrete Source

Fixed Length Code Shannon

— Discrete Source —

Variable Length Code Fano

Source Coding

Review of PCM, DM
and ADM

— Continuous Source

Huffman

A discrete Source is that source produces a finite set of messages x4, Xy, .....X, with prob. p(x;), p(x,), .....p(x,). A source coder
will transform each message into a finite sequence of digits called “codeword” of the message. If binary digits are used in this
codeword, then we obtain what is called “binary source coding”. Ternary source coding also possible. The selection of
codewords for different messages is done according to the following considerations:-

1- The average code length “L¢c” must be as minimum as possible. This Lc is given by:-

bits
symbol

where li is the length of codeword of message xi

2- The codewords at Rx must be uniquely decodable. . So that the original source sequence can be reconstructed perfectly.
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