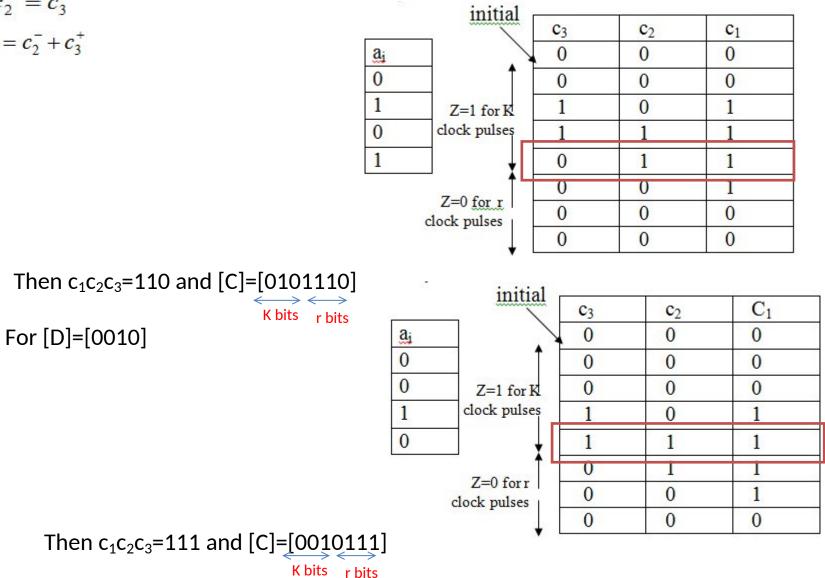


For [D]=[0101] with always zero initial states, then



EE426 Information Theory 82

At the receiver [R]=[C]+[E] where: [R] is the received codeword [C] is the transmitted codeword; [E] is the error word

writing above in polynomial form:

R(x)=C(x)+E(x)

Dividing both sides by g(x) taking the remainder, then:

$$\operatorname{Re} m \frac{R(x)}{g(x)} = \operatorname{Re} m \frac{C(x)}{g(x)} + \operatorname{Re} m \frac{E(x)}{g(x)} \text{ and since } \operatorname{Re} m \frac{C(x)}{g(x)} = 0 \text{ from transmitter side,}$$

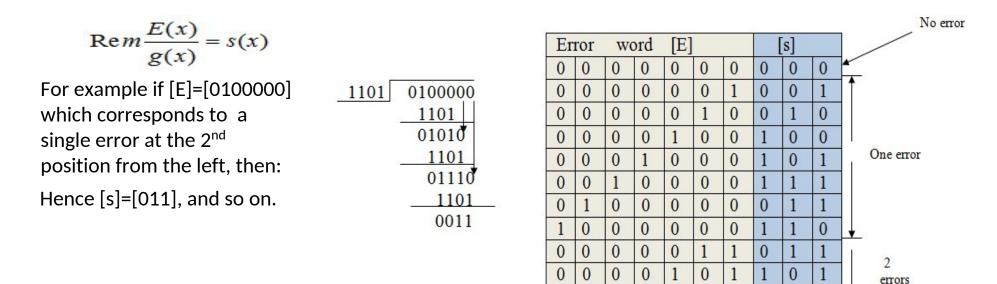
then:
$$\operatorname{Re} m \frac{R(x)}{g(x)} = \operatorname{Re} m \frac{E(x)}{g(x)} = s(x) = \text{syndrome polynomial of order (r-1).}$$

1- if s(x)=0, then the receiver decides on no error. 2-*if* s(x)/0, then errors occur.

To find the location(s) of errors, the receiver may prepare a syndrome table and store it in its memory as a look up table, use it to find [E] from [s]. This look up syndrome table starts with most probable errors(less no of errors).

Decoding of systematic cyclic code:

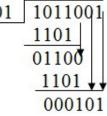
Example: Prepare the syndrome table for the (7,4) systematic cyclic code with g(x)=x³+x²+1 for single error **Solution:** [G]=[1101]. Each [s] is found from [E] by using the equation



Note 1)no repeated syndromes are observed for single error. 2)when you start to find the syndromes for double error the syndrome will be similar to the syndrome for single error case(because t=1)

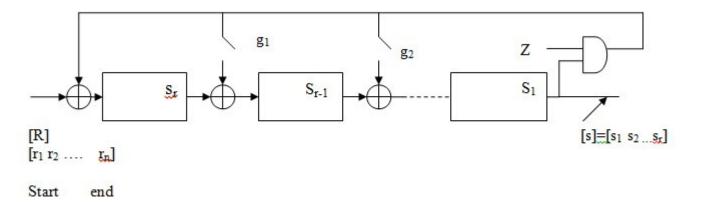
Example: Using previous syndrome table, find the corrected word for the received word [R]=[1011001].Solution: we find the syndrome from the equation below110111011011001

$$s(x) = \operatorname{Re} m \frac{R(x)}{g(x)}$$



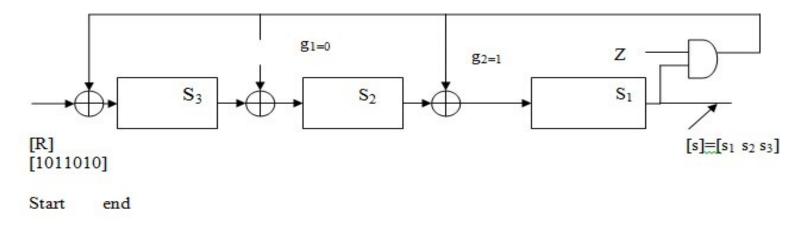
[s]=[101], using previous syndrome table for [s]=[101], then for single error [E]=[0001000], i.e. a single error at the 4th position from the left. Hence corrected word=[R]+[E] =[1011001]+[0001000]= [1010001].

The long division of R(x) by g(x) to obtain the remainder is implemented using a modular feedback shift register as shown. The control Z is set (Z=1) for n clock pulses and reset (Z=0) for r clock pulses.



Example: Use the decoder circuit to find the syndrome and hence correct the received word [R]=[1011010] for generator polynomial $g(x)=x^3+x^2+1$.

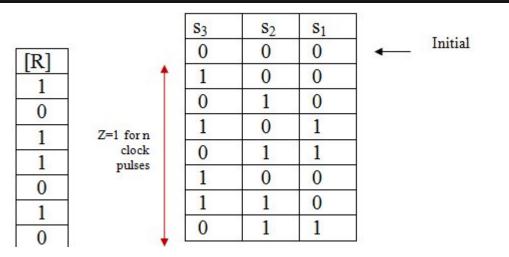
Solution: Above circuit will be as shown for $g(x)=x^3+x^2+1$.



First we need to write the transition equations for $s_1 s_2 s_3$ when Z=1 :-

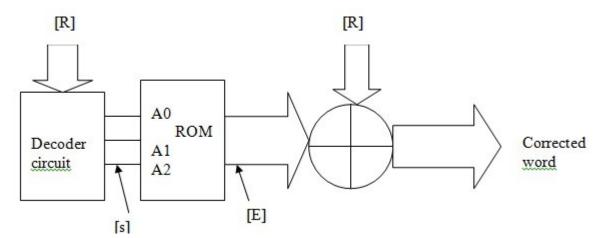
EE426 Information Theory 85

When Z=1, the transition eqs for s will be: $s_3^+ = r_i + s_1^$ $s_2^+ = s_3^$ $s_1^+ = s_2^- + s_1^-$ for zero initial states, then:



Then $[s]=[s_1 s_2 s_3]=[110]$ and using previous syndrome table then: [E]=[1000000] single error at the 1st position from the left, i.e. corrected word will be [C]=[R]+[E]=[1011010]+[100000]= [0011010]. Exercise : repeat previous example for [R]=[1110110].

The complete circuit diagram of the systematic cyclic decoder that includes the syndrome generator logic circuit and the look up table that stores the syndrome table will be as shown:



EE426 Information Theory 86

Questions?

Thank you for Listening & Attending

EE426 INFORMATION THEORY