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8.5 Refining the Sketch 

The rules covered in the previous section permit us to sketch a root locus rapidly. If 

we want more detail, we must be able to accurately find important points on the root 

locus along with their associated gain. Points on the real axis where the root locus enters 

or leaves the complex plane—real-axis breakaway and break-in points—and the jω-axis 

crossings are candidates. We can also derive a better picture of the root locus by finding 

the angles of departure and arrival from complex poles and zeros, respectively.  

In this section, we discuss the calculations required to obtain specific points on the 

root locus. Some of these calculations can be made using the basic root locus relationship 

that the sum of the zero angles minus the sum of the pole angles equals an odd multiple 

of 180°, and the gain at a point on the root locus is found as the ratio of (1) the product 

of pole lengths drawn to that point to (2) the product of zero lengths drawn to that point. 

We now discuss how to refine our root locus sketch by calculating real axis 

breakaway and break-in points, jω-axis crossings, angles of departure from complex 

poles, and angles of arrival to complex zeros. We conclude by showing how to find 

accurately any point on the root locus and calculate the gain. 

8.5.1 Real-Axis Breakaway and Break-In Points 

Numerous root loci appear to break away from the real axis as the system poles move 

from the real axis to the complex plane. At other times the loci appear to return to the 

real axis as a pair of complex poles becomes real. We illustrate this in Figure 8.13. This 

locus is sketched using the first four rules: (1) number of branches, (2) symmetry, (3) 

real-axis segments, and (4) starting and ending points. The figure shows a root locus 

leaving the real axis between −1 and −2 and returning to the real axis between +3 and 

+5. The point where the locus leaves the real axis, −σ1, is called the breakaway point, 

and the point where the locus returns to the real axis, σ2, is called the break-in point. 
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FIGURE 8.13 Root locus example showing real-axis breakaway (−σ1) and break-in points (σ2) 

We now show how to find the breakaway and break-in points. As the two closed-loop 

poles, which are at −1 and −2 when K = 0, move toward each other, the gain increases 

from a value of zero. We conclude that the gain must be maximum along the real axis at 

the point where the breakaway occurs, somewhere between −1 and −2. Naturally, the gain 

increases above this value as the poles move into the complex plane. We conclude that 

the breakaway point occurs at a point of maximum gain on the real axis between the open-

loop poles.  

Now let us turn our attention to the break-in point somewhere between +3 and +5 on 

the real axis. When the closed-loop complex pair returns to the real axis, the gain will 

continue to increase to infinity as the closed-loop poles move toward the open-loop zeros. 
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It must be true, then, that the gain at the break-in point is the minimum gain found along 

the real axis between the two zeros. 

The sketch in Figure 8.14 shows the variation of real-axis gain. The breakaway point 

is found at the maximum gain between −1 and −2, and the break-in point is found at the 

minimum gain between +3 and +5. 

 

FIGURE 8.14 Variation of gain along the real axis for the root locus of Figure 8.13 

There are three methods for finding the points at which the root locus breaks away 

from and breaks into the real axis.  

The first method is to maximize and minimize the gain, K, using differential 

calculus. For all points on the root locus, Eq. (8.13) yields

 

For points along the real-axis segment of the root locus where breakaway and break-

in points could exist, s = σ. Hence, along the real axis Eq. (8.31) becomes 
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This equation then represents a curve of K versus σ similar to that shown in Figure 

8.14. Hence, if we differentiate Eq. (8.32) with respect to σ and set the derivative equal 

to zero, we can find the points of maximum and minimum gain and hence the breakaway 

and break-in points. Let us demonstrate. 

Steps to determine the break-away points 

Step 1: Frame the characteristic equation 1 + G(s)H(s) = 0 of the system. 

Step 2: Write K in terms of s, i.e., K =f(s). 

Step 3: Derive dk/ds and put dk/ds = 0 

Step 4: The roots of the equation dk/ds = 0 are the break-away points. 

If the value of K is positive for any root of dk/ds = 0, the root(s) is ( are) valid break-

away/break-in 

point(s). 

Example 8.3  

Find the breakaway and break-in points for the root locus of Figure 8.13, using 

differential calculus. 

SOLUTION: Using the open-loop poles and zeros, we represent the open-loop system 

whose root locus is shown in Figure 8.13 as follows: 

 

But for all points along the root locus, KG(s)H(s) = − 1, and along the real axis, s = σ. 

Hence, 

 

Solving for K, we find 
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Differentiating K with respect to σ and setting the derivative equal to zero yields 

 

Solving for σ, we find σ = − 1.45 and 3.82, which are the breakaway and break-in 

points. 

 

Example 8.4 For G(s)H(s) = K/[s(s + 1) (s + 3)], determine the coordinates of valid 

break-away/break-in 

point(s). 

Solution 
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The second method is a variation on the differential calculus method. Called the 

transition method, it eliminates the step of differentiation. Breakaway and break-in 

points satisfy the relationship 

 

where zi and pi are the negative of the zero and pole values, respectively, of G(s)H(s). 

Solving Eq. (8.37) for σ, the real-axis values that minimize or maximize K, yields the 

breakaway and break-in points without differentiating. Let us look at an example. 

Example 8.5  

Repeat Example 8.3 without differentiating. 

SOLUTION: 

Using Eq. (8.37), 

 

Simplifying, 

 

Hence, σ = − 1.45 and 3.82, which agrees with Example 8.3. 

For the third method, 

Simply use the program to search for the point of maximum gain between −1 and −2 and 

to search for the point of minimum gain between +3 and +5. Table 8.2 shows the results 

of the search. The locus leaves the axis at −1.45, the point of maximum gain between −1 
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and −2, and reenters the real axis at +3.8, the point of minimum gain between +3 and +5. 

These results are the same as those obtained using the first two methods. 

 

8.5.2 The jω-Axis Crossings 

We now further refine the root locus by finding the imaginary-axis crossings. The 

importance of the jω-axis crossings should be readily apparent. Looking at Figure 8.12, 

we see that the system's poles are in the left half-plane up to a particular value of gain. 

Above this value of gain, two of the closed-loop system's poles move into the right 

halfplane, signifying that the system is unstable. The jω-axis crossing is a point on the 

root locus that separates the stable operation of the system from the unstable operation. 

The value of ω at the axis crossing yields the frequency of oscillation, while the gain at 

the jω-axis crossing yields, for this example, the maximum positive gain for system 

stability. We should note here that other examples illustrate instability at small values of 
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gain and stability at large values of gain. These systems have a root locus starting in the 

right half-plane (unstable at small values of gain) and ending in the left half-plane (stable 

for high values of gain). To find the jω-axis crossing, we can use the Routh–Hurwitz 

criterion, as follows: Forcing a row of zeros in the Routh table will yield the gain; going 

back one row to the even polynomial equation and solving for the roots yields the 

frequency at the imaginary-axis crossing. 

To find the intersection of root locus with the imaginary 

axis, the following procedures are followed. 

Step 1: Construct the characteristic equation 1 + G(s)H(s) = 0. 

Step 2: Develop Routh’s array in terms of K. 

Step 3: Find Kmar that creates one of the roots of Routh’s array as a row of zeros. 

Step 4: Frame auxiliary equation A(s) = 0 with the help of the coefficient of a row just 

above the row of zeros. 

Step 5: The roots of the auxiliary equation A(s) = 0 for K = Kmar give the intersection 

points of the root locus with the imaginary axis. 

Example 8.6 For G(s)H(s) = K/[s(s + 1)0 + 3)], find the point of the root locus with the 

jw-axis. 

Solution 

1 + G(s)H(s) = 0        ,  1+ K/[s(s + 1)0 + 3)]       ⇒ s3 + 6s2 + 8s + K = 0 

Now K = 48 and the row corresponding to sl becomes a row of zeros.  

The auxiliary equation with the help of the coefficients corresponding  

to s2 is given by 

6s2 + K = 0    or 6s2 + 48 = 0  or s2 = - 8  s = ± j2√2 

Therefore, s = ± j2√2  are the points of the intersection of root locus with the imaginary 

axis. 
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8.5.3 Angles of Departure and Arrival 

In this subsection, we further refine our sketch of the root locus by finding angles of 

departure and arrival from complex poles and zeros. Consider Figure 8.15, which shows 

the open-loop poles and zeros, some of which are complex. The root locus starts at the 

open-loop poles and ends at the open-loop zeros. In order to sketch the root locus more 

accurately, we want to calculate the root locus departure angle from the complex poles 

and the arrival angle to the complex zeros. 

 

 

FIGURE 8.15 Open-loop poles and zeros and calculation of a. angle of departure; b. angle of 

arrival 
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The first method: If we assume a point on the root locus ε close to a complex pole, the 

sum of angles drawn from all finite poles and zeros to this point is an odd multiple of 

180°. Except for the pole that is ε close to the point, we assume all angles drawn from all 

other poles and zeros are drawn directly to the pole that is near the point. Thus, the only 

unknown angle in the sum is the angle drawn from the pole that is ε close. We can solve 

for this unknown angle, which is also the angle of departure from this complex pole. 

Hence, from Figure 8.15(a), 

 

If we assume a point on the root locus ε close to a complex zero, the sum of angles drawn 

from all finite poles and zeros to this point is an odd multiple of 180°. Except for the zero 

that is ε close to the point, we can assume all angles drawn from all other poles and zeros 

are drawn directly to the zero that is near the point. Thus, the only unknown angle in the 

sum is the angle drawn from the zero that is ε close. We can solve for this unknown angle, 

which is also the angle of arrival to this complex zero. Hence, from Figure 8.15(b), 

 

Example 8.7  

Given the unity-feedback system of Figure 8.16, find the angle of 

departure from the complex poles and sketch the root locus. 
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FIGURE 8.16 Unity-feedback system with complex poles 

SOLUTION: 

Using the poles and zeros of G(s) = (s + 2)/[(s + 3) (s2 + 2s + 2)] as plotted in Figure 

8.17, we calculate the sum of angles drawn to a point ε close to the complex  

pole, −1 + j1, in the second quadrant. Thus, 

 

                                                                                                                               = 180° 

from which θ = − 251.6° = 108.4°. A sketch of the root locus is shown in Figure 8.17. 

Notice how the departure angle from the complex poles helps us to refine the shape. 

 

FIGURE 8.17 Root locus for system of Figure 8.16 showing angle of departure 
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The second method:   Angle of departure/arrival: The root locus leaves from a complex 

pole and arrives at a complex zero. These two angles are known as angle of departure and 

angle of arrival, respectively. Angle of departure 

(𝜃d) is given by  

 

where arg G(s)H(s) is the angle of G(s)H(s) excluding the pole where the angle is to be 

calculated. 

Similarly, the angle of arrival is given by 

 

where arg G(s)H(s) is the angle of G(s)H(s) excluding the zero where the angle is to be 

calculated. 

Example 11.18 Find the angle of departure for G(s)H(s) = K(s + 3)/[s+ 2 +j) (s + 2 -j)] 

where K > 0. 

Solution 

(i) Analytically: 

To calculate (𝜃d) analytically for s = -2 + j, the term s + 2 - j should be included from 

G(s)H(s). 
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8.5.4 Plotting and Calibrating the Root Locus 

Once we sketch the root locus using the rules from Section 8.4, we may want to accurately 

locate points on the root locus as well as find their associated gain. For example, we might 

want to know the exact coordinates of the root locus as it crosses the radial line 

representing 20% overshoot. Further, we also may want the value of gain at that point. 

Consider the root locus shown in Figure 8.12. Let us assume we want to find the exact 

point at which the locus crosses the 0.45 damping ratio line and the gain at that point. 

Figure 8.18 shows the system's open loop poles and zeros along with the ζ = 0.45 line. If 

a few test points along the ζ = 0.45 line are selected, we can evaluate their angular sum 

and locate that point where the angles add up to an odd multiple of 180°. It is at this point 

that the root locus exists. Equation (8.21) can then be used to evaluate the gain, K, at that 

point. 

 

FIGURE 8.18 Finding and calibrating exact points on the root locus of Figure 8.12 

Selecting the point at radius 2 (r = 2) on the ζ = 0.45 line, we add the angles of the zeros 

and subtract the angles of the poles, obtaining 

θ2 − θ1 − θ3 − θ4 − θ5 = −251.5°                                     8.47 

Since the sum is not equal to an odd multiple of 180°, the point at radius = 2 is not on 

the root locus. Proceeding similarly for the points at radius = 1.5, 1, 0.747, and 0.5, we 

obtain the table shown in Figure 8.18. 
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This table lists the points, giving their radius, r, and the sum of angles indicated by the 

symbol ∠. From the table, we see that the point at radius 0.747 is on the root locus, since 

the angles add up to −180°. Using Eq. (8.21), the gain, K, at this point is 

 

8.6 Steps for Solving Problems on Root Locus 

Step 1: Determine the branch number of loci, ending at infinity using Rule 1. 

Step 2: Plot the poles and zeros on s-plane. 

Step 3: Find real axis loci using Rule 2. Show the real axis loci wherever present by 

dark lines. 

Step 4: Find the number of asymptotes and their angles by Rule 3. 

Step 5: Using Rule 4, determine the centre of asymptotes and draw results of Steps 4 

and 5. 

Step 6: Determine the break-away/break-in point if present using Rule 6 and mark the 

point only. 

Step 7: Determine jw crossover using Rule 7 if the locus crosses the jw axis. 

Step 8: Calculate the angle of departure or the angle of arrival due to complex poles or 

zeros, respectively, using Rule 8. 

 

Example 8.8 Sketch the root locus 

 

Solution 

Step 1: Number of poles - n - 3 number of zeros = m = 0 

number of loci - n - m = 3- 0 = 3 

Step 2: The pole-zero plot of G(s)H(s) is shown in Fig. E l 1.13. 

Step 3: Real axis locus is 

(i) present for - 1 < σ< 0 
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(ii) present for - ∞ < σ < - 1 

This is shown in Fig. E l 1.13(a). 

 

 

Step4: Since n-m = 3 and q = 0, 1,2, 
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Step 8 

 

 


