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2.4 Rotational Mechanical System Transfer Functions 

Having covered electrical and translational mechanical systems, we now move on to 

consider rotational mechanical systems. Rotational mechanical systems are handled the 

same way as translational mechanical systems, except that torque replaces force and 

angular displacement replaces translational displacement. The mechanical components 

for rotational systems are the same as those for translational systems, except that the 

components undergo rotation instead of translation. Table 2.5 shows the components 

along with the relationships between torque and angular velocity, as well as angular 

displacement. Notice that the symbols for the components look the same as translational 

symbols, but they are undergoing rotation and not translation. 

 

Note: The following set of symbols and units is used throughout this book: T(t) − N-m (newton-meters), 

θ(t) − rad (radians), ω(t) − rad/s (radians/second), K − N-m/rad (newton-meters/radian), D − N-m-s/rad(newton-

meters-seconds/radian). J −kg-m2 (kilograms-meters2 − newton-meters-seconds2/radian). 
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Also notice that the term associated with the mass is replaced by inertia. The values of 

K, D, and J are called spring constant, coefficient of viscous friction, and moment of 

inertia, respectively. The impedances of the mechanical components are also summarized 

in the last column of Table 2.5. The values can be found by taking the Laplace transform, 

assuming zero initial conditions, of the torque angular displacement column of Table 2.5. 

The concept of degrees of freedom carries over to rotational systems, except that we 

test a point of motion by rotating it while holding still all other points of motion. The 

number of points of motion that can be rotated while all others are held still equals the 

number of equations of motion required to describe the system. 

Writing the equations of motion for rotational systems is similar to writing them for 

translational systems; the only difference is that the free-body diagram consists of torques 

rather than forces. We obtain these torques using superposition. First, we rotate a body 

while holding all other points still and place on its free-body diagram all torques due to 

the body's own motion. Then, holding the body still, we rotate adjacent points of motion 

one at a time and add the torques due to the adjacent motion to the free-body diagram. 

The process is repeated for each point of motion. For each free-body diagram, these 

torques are summed and set equal to zero to form the equations of motion. 

 

 

 

 

 

 

 

 

Example 2.16 Transfer Function—Two Equations of Motion PROBLEM: 

Find the transfer function, θ2(s)/T(s), for the rotational system shown in Figure below. 

The rod is supported by bearings at either end and is undergoing torsion. A torque is 

applied at the left, and the displacement is measured at the right.  

 

Figure (a): Physical system 
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                       figure (b) Schematic                                               figure  (c) block diagram 

SOLUTION: 

First, obtain the schematic from the physical system. Even though torsion occurs 

throughout the rod in Figure (a), we approximate the system by assuming that the 

torsion acts like a spring concentrated at one particular point in the rod, with an inertia 

J1 to the left and an inertia J2 to the right. We also assume that the damping inside the 

flexible shaft is negligible. The schematic is shown in Figure 2.22(b). There are two 

degrees of freedom, since each inertia can be rotated while the other is held still. 

Hence, it will take two simultaneous equations to solve the system. Next, draw a free-

body diagram of J1 in below. 

  

FIGURE a. Torques on J1 due only to the motion of J1; b. torques on J1 due only to the motion of J2; 

c. final free-body diagram for J1 

using superposition. Figure (a) shows the torques on J1 if J2 is held still and J1 rotated. 

Figure (b) shows the torques on J1 if J1 is held still and J2 rotated. Finally, the sum of 

Figures 2.23(a) and 2.23(b) is shown in Figure 2.23(c), the final Freebody diagram for 

J1. The same process is repeated in Figure below for J2. 
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FIGURE a. Torques on J2 due only to the motion of J2; b. torques on J2 due only to the motion of J1; 

c. final free-body diagram for J2 

Summing torques, respectively, from tow (c) Figures above we obtain the equations 

of motion, 

(J1s2 + D1s + K) θ1 (s) − Kθ2 (s) = T (s)                                       2.63 

−Kθ1 (s) + (J2s2 + D2s + K) θ2 (s) = 0                                          2.64 

from which the required transfer function is found to be 

                                                                               2.65 

 

Where 
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2.5 Transfer Functions for Systems with Gears 

Now that we are able to find the transfer function for rotational systems, we realize that 

these systems, especially those driven by motors, are rarely seen without associated gear 

trains driving the load. This section covers this important topic. 

Gears provide mechanical advantage to rotational systems. Anyone who has ridden a 

10-speed bicycle knows the effect of gearing. Going uphill, you shift to provide more 

torque and less speed. On the straightaway, you shift to obtain more speed and less torque. 

Thus, gears allow you to match the drive system and the load—a trade-off between speed 

and torque. 

The linearized interaction between two gears is depicted in Figure below. An input gear 

with radius r1 and N1 teeth is rotated through angle θ1(t) due to a torque, T1(t). An output 

gear with radius r2 and N2 teeth responds by rotating through angle θ2(t) and delivering a 

torque, T2(t). Let us now find the relationship between the rotation of Gear 1, θ1(t), and 

Gear 2, θ2(t). 

 

FIGURE A gear system 

 

From Figure above, as the gears turn, the distance travelled along each gear's 

circumference is the same. Thus 

r1θ1 = r2θ2                                                                                                      2.66 

𝜃2

𝜃1
=

𝑟1

𝑟2
=

𝑁1

𝑁2
                                                                                                 2.67 
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What is the relationship between the input torque, T1, and the delivered torque, T2? If 

we assume the gears are lossless, that is, they do not absorb or store energy, the energy 

into Gear 1 equals the energy out of Gear Since the translational energy of force times 

displacement becomes the rotational energy of torque times angular displacement, 

T1θ1 = T2θ2                                                                                                    2.68 

𝑇2

𝑇1
=

𝜃1

𝜃2
=

𝑁2

𝑁1
                                                                                                 2.69 

Thus, the torques are directly proportional to the ratio of the number of teeth. All results 

are summarized in Figure below. 

 

FIGURE Transfer functions for a. angular displacement in lossless gears and b. torque in lossless gears 

Let us see what happens to mechanical impedances that are driven by gears. Figure 

below (a) shows gears driving a rotational inertia, spring, and viscous damper. For clarity, 

the gears are shown by an end-on view. We want to represent Figure below (a) as an 

equivalent system at θ1 without the gears. In other words, can the mechanical impedances 

be reflected from the output to the input, thereby eliminating the gears? 
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a. Rotational system driven by gears; b. equivalent system at the output after reflection of input torque; 

c. equivalent system at the input after reflection of impedances 

From Figure of transfer function above (b), T1 can be reflected to the output by 

multiplying by N2/N1. The result is shown in Figure above (b), from which we write the 

equation of motion as 

                                                                                                                            2.70 

Now convert θ2(s) into an equivalent θ1(s), so that Eq. (2.70) will look as if it were 

written at the input. Using Figure of transfer function (a) to obtain θ2(s) in terms of 

θ1(s), we get 

                                                                                                                           2.71 

After simplification, 

                                                                                                                          2.72 

which suggests the equivalent system at the input and without gears shown in Figure (c). 

Thus, the load can be thought of as having been reflected from the output to the input. 

Generalizing the results, we can make the following statement: Rotational mechanical 
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impedances can be reflected through gear trains by multiplying the mechanical impedance 

by the ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.17 Transfer Function—System with Lossless Gears PROBLEM: 

Find the transfer function, θ2(s)/T1(s), for the system of Figure (a) below. 

 

FIGURE a. Rotational mechanical system with gears; b. system after reflection of torques and 

impedances to the output shaft; c. block diagram 

SOLUTION: 

It may be tempting at this point to search for two simultaneous equations 

corresponding to each inertia. The inertias, however, do not undergo linearly 

independent motion, since they are tied together by the gears. Thus, there is only one 

degree of freedom and hence one equation of motion. Let us first reflect the 

impedances (J1 and D1) and torque (T1) on the input shaft to the output as shown in 

Figure (b), where the impedances are reflected by (N2/N1)2 and the torque is reflected 

by (N2/N1). The equation of motion can now be written as 

(Jes
2 + Des + Ke) θ2 (s) = T1 (s) 

𝑁2

𝑁1
                                                                     2.73    

Where  

                  

Solving for θ2(s)/T1(s), the transfer function is found to be 

                                                             2.74 
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2.6 Electromechanical System Transfer Functions 

In the last section we talked about rotational systems with gears, which completed 

our discussion of purely mechanical systems. Now, we move to systems that are hybrids 

of electrical and mechanical variables, the electromechanical systems. We have seen one 

application of an electromechanical system in Chapter 1, the antenna azimuth position 

control system. Other applications for systems with electromechanical components are 

robot controls, sun and star trackers, and computer tape and disk drive position controls. 

A motor is an electromechanical component that yields a displacement output for a 

voltage input, that is, a mechanical output generated by an electrical input. We will 

derive the transfer function for one particular kind of electromechanical system, the 

armature-controlled dc servomotor.  The motor's schematic is shown in Figure below 

(a), and the transfer function we will derive appears in Figure (b). 

 

FIGURE DC motor: a. schematic                           b. block diagram 

                                                                                                           2.75  

 We call vb(t) the back electromotive force(back emf); Kb is a constant of 

proportionality called the back emf constant; and dθm(t)/dt = ωm(t) is the angular velocity 

of the motor. Taking the Laplace transform, we get 

Vb (s) = Kbsθm (s)                                                                              2.76 
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The relationship between the armature current, ia(t), the applied armature voltage, ea(t), 

and the back emf, vb(t), is found by writing a loop equation around the Laplace transformed 

armature circuit.  

RaIa (s) + LasIa (s) + Vb (s) = Ea (s)                                                               2.77  

The torque developed by the motor is proportional to the armature current; thus,  

Tm (s) = KtIa (s)                                                                                            2.78 

where Tm is the torque developed by the motor, and Kt is a constant of proportionality, 

called the motor torque constant, which depends on the motor and magnetic field 

characteristics. In a consistent set of units, the value of Kt is equal to the value of Kb. 

Rearranging Eq. (2.78) yields 

                                                                                2.79       

To find the transfer function of the motor, we first substitute Eqs. (2.76) and (2.79) 

into (2.77), yielding 

                                                                                                                        2.80 

Now we must find Tm(s) in terms of θm(s) if we are to separate the input and output 

variables and obtain the transfer function, θm(s)/Ea(s).  

Figure below shows a typical equivalent mechanical loading on a motor. Jm is the 

equivalent inertia at the armature and includes both the armature inertia and, as we will 

see later, the load inertia reflected to the armature. Dm is the equivalent viscous damping 

at the armature and includes both the armature viscous damping and, as we will see later, 

the load viscous damping reflected to the armature. From Figure below, 

 

FIGURE Typical equivalent mechanical loading on a motor 
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Tm (s) = (Jms2 + Dms) θm (s)                                                                     2.81 

Substituting Eq. (2.81) into Eq. (2.80) yields 

                                                                                                                      2.82 

If we assume that the armature inductance, La, is small compared to the armature 

resistance, Ra, which is usual for a dc motor, Eq. (2.82) becomes  

                                                                                                                      2.83     

After simplification, the desired transfer function, θm(s)/Ea(s), is found to be 

                                                                                                                      2.84 

Even though the form of Eq. (2.84) is relatively simple, namely 

                                                                                 2.85 

the reader may be concerned about how to evaluate the constants. 

Let us first discuss the mechanical constants, Jm and Dm. Consider Figure below, which 

shows a motor with inertia Ja and damping Da at the armature driving a load consisting of 

inertia JL and damping DL. Assuming that all inertia and damping values shown are 

known, JL and DL can be reflected back to the armature as some equivalent inertia and 

damping to be added to Ja and Da, respectively. Thus, the equivalent inertia, Jm, and 

equivalent damping, Dm, at the armature are 

                                                                                                                     2.86   

 

 

 

 

FIGURE DC motor driving a rotational mechanical load 
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Now that we have evaluated the mechanical constants, Jm and Dm, what about the 

electrical constants in the transfer function of Eq. (2.84)? We will show that these constants 

can be obtained through a dynamometer test of the motor, where a dynamometer measures 

the torque and speed of a motor under the condition of a constant applied voltage. Let us 

first develop the relationships that dictate the use of a dynamometer. Substituting Eqs. 

(2.76) and (2.79) into Eq. (2.77), with La = 0, yields 

                                                                                                                              2.87 

Taking the inverse Laplace transform, we get 

                                                                                                                              2.88 

where the inverse Laplace transform of sθm(s) is dθm(t)/dt or, alternately, ωm(t). If a dc 

voltage, ea, is applied, the motor will turn at a constant angular velocity, ωm, with a constant 

torque, Tm. Hence, dropping the functional relationship based on time from Eq. (2.88), the 

following relationship exists when the motor is operating at steady state with a dc voltage 

input: 

                                                                                                                              2.89 

Solving for Tm yields 

                                                                                                                             2.90 

Equation (2.90) is a straight line, Tm vs. ωm, and is shown in Figure below. This plot is 

called the torque–speed curve. The torque axis intercept occurs when the angular velocity 

reaches zero. That value of torque is called the stall torque, Tstall. Thus, 

                                                                                                                            2.91 

The angular velocity occurring when the torque is zero is called the no-load speed,  

ωno-load. Thus, 

                                                                                                                           2.92 
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The electrical constants of the motor's transfer function can now be found from Eqs. 

(2.91) and (2.92) as 

                                                                                                                        2.93 

and 

                                                                                                                        2.94 

The electrical constants, Kt/Ra and Kb, can be found from a dynamometer test of the 

motor, which would yield Tstall and ωno-load for a given ea. 

 

FIGURE Torque–speed curves with an armature voltage, ea, as a parameter 

 

 

 

 

 

 

 

 

 

 

Example 2.23 Transfer Function—DC Motor and Load 

PROBLEM: 

Given the system and torque–speed curve of Figure below(a) and (b), find the transfer 

function, 

θL(s)/Ea(s). 

 



CHAPTER 2             TRANSFER FUNCTIONS          ASST. LECTURER   AHMED SAAD 

43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE a. DC motor and load; b. torque–speed curve; c. block diagram 

SOLUTION: 

Begin by finding the mechanical constants, Jm and Dm, in Eq. (2.84). From Eq. 

(2.86), the total inertia at the armature of the motor is 

                                    2.95 

and the total damping at the armature of the motor is 

                                  2.96 

Now we will find the electrical constants, Kt/Ra and Kb. From the torque–speed 

curve of Figure (b), 

Tstall = 500     ωno−load = 50       ea = 100   Hence the electrical constants are 

                                                                  2.97 

                                                                  2.98 

Substituting Eqs. (2.95), (2.96), (2.97), and (2.98) into Eq. (2.84) yield 

                          2.99 

In order to find θL(s)/Ea(s), we use the gear ratio, N1/N2 = 1/10, and find 

                                                                       2.100 


