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Operational Amplifiers 

An operational amplifier, pictured in Figure below (a), is an electronic amplifier used 

as a basic building block to implement transfer functions. It has the following 

characteristics: 

1. Differential input, v2(t) − v1(t) 

2. High input impedance, Zi = ∞ (ideal) 

3. Low output impedance, Zo = 0 (ideal) 

4. High constant gain amplification, A = ∞ (ideal) 

 

FIGURE a. Operational amplifier; b. schematic for an inverting operational amplifier;  

c. inverting operational amplifier configured for transfer function realization. 

Typically, the amplifier gain, A, is omitted. The output, vo(t), is given by 

vo (t) = A(v2 (t) − v1 (t))                                                                     2.38 
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Inverting Operational Amplifier 

If v2(t) is grounded, the amplifier is called an inverting operational amplifier, as shown 

in Figure (b). For the inverting operational amplifier, we have 

Vo (t) = −Av1 (t).                                                                                         2.39 

If two impedances are connected to the inverting operational amplifier as shown in 

Figure (c), we can derive an interesting result if the amplifier has the characteristics 

mentioned in the beginning of this subsection. If the input impedance to the amplifier is 

high, then by Kirchhoff's current law Ia(s) = 0 and I1(s) = − I2(s). Also, since the gain A 

is large, v1(t) ≈ 0. Thus, I1(s) = Vi(s)/Z1(s), and −I2(s) =−Vo(s)/Z2(s). Equating the two 

currents, Vo(s)/Z2(s) = − Vi(s)/Z1(s), or the transfer function of the inverting operational 

amplifier configured as shown in Figure (c) is 

                                                                        2.40 

 

 

 

 

 

 

 

 

  

 

 

 

Example 2.12 Transfer Function—Inverting Operational Amplifier 

Circuit 

PROBLEM:  

Find the transfer function, Vo(s)/Vi(s), for the circuit given in Figure below  
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Noninverting Operational Amplifier 

Another circuit that can be analysed for its transfer function is the noninverting 

operational amplifier circuit shown in Figure below.  

 

 

SOLUTION: 

The transfer function of the operational amplifier circuit is given by Eq. (2.40). Since 

the admittances of parallel components add, Z1(s) is the reciprocal of the sum of the 

admittances, or  

      

For Z2(s) the impedances add, or 

                                          

Substituting Eqs. (2.41) and (2.42) into Eq. (2.40) and simplifying, we get 

                                           2.43 

The resulting circuit is called a PID controller and can be used to improve the 

performance of a control system. 

 2.41 

 2.42 
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We now derive the transfer function. We see that 

Vo (s) = A(Vi (s) − V1 (s))                                                                         2.44         

But, using voltage division,  

                                                     

                                                    2.45 

 

Substituting Eq. (2.45) into Eq. (2.44), rearranging, and simplifying, we obtain 

                                                           2.46     

For large A, we disregard unity in the denominator and Eq. (2.46) becomes 

                                                                    2.47 

 

Let us now look at an example. 

 

General noninverting operational amplifier circuit 
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Example 2.13 Transfer Function—Noninverting Operational Amplifier 

Circuit 

PROBLEM: 

Find the transfer function, Vo(s)/Vi(s), for the circuit given in Figure below. 

 

FIGURE Noninverting operational amplifier circuit for Example 2.13 

SOLUTION: 

We find each of the impedance functions, Z1(s) and Z2(s), and then substitute them 

into Eq.(2.47). Thus, 

 

Substituting Eqs. (2.48) and (2.49) into Eq. (2.47) yields 

 

2.50 

2.48 

 

 

 

2.49 
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2.3 Translational Mechanical System Transfer Functions 

Mechanical systems, like electrical networks, have three passive, linear components. 

Two of them, the spring and the mass, are energy-storage elements; one of them, the 

viscous damper, dissipates energy. The two energy-storage elements are analogous to 

the two electrical energy-storage elements, the inductor and capacitor. The energy 

dissipator is analogous to electrical resistance. Let us take a look at these mechanical 

elements, which are shown in Table 2.4. In the table, K, fv, and M are called spring 

constant, coefficient of viscous friction, and mass, respectively. 

 

Note: The following set of symbols and units is used throughout this book: f(t) = N 

(newtons), x(t) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter), fv = N-

s/m (newton-seconds/meter), M = kg (kilograms = newtonseconds2/ meter). 

We now create analogies between electrical and mechanical systems by comparing 

Tables 2.3 and 2.4. Comparing the force–velocity column of Table 2.4 to the voltage–

current column of Table 2.3, we see that mechanical force is analogous to electrical 



CHAPTER 2             TRANSFER FUNCTIONS          ASST. LECTURER   AHMED SAAD 

25 

 

voltage and mechanical velocity is analogous to electrical current. Comparing the force–

displacement column of Table 2.4 with the voltage–charge column of Table 2.3 leads to 

the analogy between the mechanical displacement and electrical charge. We also see 

that the spring is analogous to the capacitor, the viscous damper is analogous to the 

resistor, and the mass is analogous to the inductor. Thus, summing forces written in 

terms of velocity is analogous to summing voltages written in terms of current, and the 

resulting mechanical differential equations are analogous to mesh equations. If the 

forces are written in terms of displacement, the resulting mechanical equations resemble, 

but are not analogous to, the mesh equations. We, however, will use this model for 

mechanical systems so that we can write equations directly in terms of displacement. 

 Another analogy can be drawn by comparing the force–velocity column of Table 2.4 

to the current–voltage column of Table 2.3 in reverse order. Here the analogy is between 

force and current and between velocity and voltage. Also, the spring is analogous to the 

inductor, the viscous damper is analogous to the resistor, and the mass is analogous to 

the capacitor. Thus, summing forces written in terms of velocity is analogous to 

summing currents written in terms of voltage and the resulting mechanical differential 

equations are analogous to nodal equations. 

The mechanical system requires just one differential equation, called the equation of 

motion, to describe it. We will begin by assuming a positive direction of motion, for 

example, to the right. This assumed positive direction of motion is similar to assuming 

a current direction in an electrical loop. Using our assumed direction of positive motion, 

we first draw a free-body diagram, placing on the body all forces that act on the body 

either in the direction of motion or opposite to it. Next, we use Newton's law to form a 

differential equation of motion by summing the forces and setting the sum equal to zero. 

Finally, assuming zero initial conditions, we take the Laplace transform of the 

differential equation, separate the variables, and arrive at the transfer function. An 

example follows. 
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Example 2.14 Transfer Function—One Equation of Motion 

PROBLEM: 

Find the transfer function, X(s)/F(s), for the system of Figure below. 

 

SOLUTION: 

Begin the solution by drawing the free-body diagram shown in Figure below(a). 

Place on the mass all forces felt by the mass. We assume the mass is traveling toward 

the right. Thus, only the applied force points to the right; all other forces impede the 

motion and act to oppose it. Hence, the spring, viscous damper, and the force due to 

acceleration point to the left 

 

a. Free-body diagram of mass, spring, and damper system; b. transformed free-body diagram 

We now write the differential equation of motion using Newton's law to sum to 

zero all of the forces shown on the mass in Figure (a): 

 

 

 

2.51 

 

 

2.52 

 

2.53 

 

 

2.54 
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Now can we parallel our work with electrical networks by circumventing the writing 

of differential equations and by defining impedances for mechanical components? If so, 

we can apply to mechanical systems the problem-solving techniques learned in the 

previous section. Taking the Laplace transform of the force–displacement column in 

Table 2.4, we obtain for the spring, 

                                                                                2.55 

for the viscous damper, 

                                                                                 2.56 

and for the mass, 

                                                                                  2.57 

If we define impedance for mechanical components as 

                                                                             2.58 

 

                                                                                         2.59 

                                         2.60 

Many mechanical systems are similar to multiple-loop and multiple-node electrical 

networks, where more than one simultaneous differential equation is required to describe 

the system. In mechanical systems, the number of equations of motion required is equal 

to the number of linearly independent motions. Linear independence implies that a point 

of motion in a system can still move if all other points of motion are held still. 

In order to work such a problem, we draw the free-body diagram for each point of 

motion and then use superposition. For each free-body diagram we begin by holding all 

other points of motion still and finding the forces acting on the body due only to its own 

motion. Then we hold the body still and activate the other points of motion one at a time, 
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placing on the original body the forces created by the adjacent motion. Using Newton's 

law, we sum the forces on each body and set the sum to zero. The result is a system of 

simultaneous equations of motion. As Laplace transforms, these equations are then solved 

for the output variable of interest in terms of the input variable from which the transfer 

function is evaluated. Example 2.15 demonstrates this problem-solving technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.15 Transfer Function—Two Degrees of Freedom 

Find the transfer function, X2(s)/F(s), for the system of Figure below (a). 

 

a. Two-degrees-of-freedom translational mechanical system                b. block diagram 

SOLUTION: 

The system has two degrees of freedom, since each mass can be moved in the 

horizontal direction while the other is held still. Thus, two simultaneous equations of 

motion will be required to describe the system. The two equations come from free-body 

diagrams of each mass. Superposition is used to draw the free-body diagrams. For 

example, the forces on M1 are due to (1) its own motion and (2) the motion of M2 

transmitted to M1 through the system. We will consider these two sources separately. If 

we hold M2 still and move M1 to the right, we see the forces shown in Figure below (a). 

If we hold M1 still and move M2 to the right, we see the forces shown in Figure below 

(b). The total force on M1 is the superposition, or sum, of the forces just discussed. This 

result is shown in Figure below(c).  
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a. Forces on M1 due only to motion of M1; b. forces on M1 due only to motion of M2; c. all forces on M1 

For M2, we proceed in a similar fashion: First we move M2 to the right while holding 

M1 still; then we move M1 to the right and hold M2 still. For each case we evaluate 

the forces on M2. The results appear in Figure below. 

 

a. Forces on M2 due only to motion of M2; b. forces on M2 due only to motion of M1; c. all forces on M2 

The Laplace transform of the equations of motion can now be written from Figures  

 

From this, the transfer function, X2(s)/F(s), is 

                                                                          2.62 

 


