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Every system has to pass through a transient stage for a small period before reaching 

steady state. Naturally the question comes into play, “Will the system reach its steady state 

after passing through transients?” To get the answer of this question, study of stability is 

of utmost importance.  

6.1 Effect of Location of Poles on Stability 

Location of poles has a direct effect on stability. The entire S-plane is taken into 

account and it is divided as 

follows: 

(a) Left half plane (LHP) 

(b) jw-axis 

(c) Right half plane (RHP) 

Let us consider the following cases: 

(a) LHP poles 

(i) On real axis and simple, 

(ii) On real axis and multiple, 

(iii) Complex conjugates and simple. 

The system is stable for all of the above conditions. 

(b) jw-axis 

(i) On jw-axis and simple 

(ii) On jw-axis and multiple 

(iii) At origin 

(iv) At origin and multiple 



 CHAPTER 6             STABILITY OF CONTROL SYSTEM        ASST. LECTURER   AHMED SAAD 

2 

 

In this case, if the pole has zero real part and is not repeated, the system is called 

stable. 

(c) RHP poles 

(i) On real axis and simple 

(ii) On real axis and multiple 

(iii) Complex conjugates and simple 

The system is unstable for all of the above conditions. 

Figure 6.1 depicts all the above conditions 

 

Fig.6.1 

6.2 Routh–Hurwitz Criterion 

In this section, we learn a method that yields stability information without the need to 

solve for the closed-loop system poles. Using this method, we can tell how many closed-

loop system poles are in the left half-plane, in the right half plane, and on the jω-axis. 

(Notice that we say how many, not where.) We can find the number of poles in each 

section of the s-plane, but we cannot find their coordinates. The method is called the 

Routh–Hurwitz criterion for stability (Routh, 1905). 
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The method requires two steps: 

 (1) Generate a data table called a Routh table and  

(2) interpret the Routh table to tell how many closed-loop system poles are in the left 

half-plane, the right half-plane, and on the jω-axis 

6.2.1 Generating a Basic Routh Table 

Look at the equivalent closed-loop transfer function shown in Figure 6.2. Since we are 

interested in the system poles, we focus our attention on the denominator. We first create 

the Routh table shown in Table 6.1. Begin by labelling the rows with powers of s from the 

highest power of the denominator of the closed-loop transfer function to s0. Next start with 

the coefficient of the highest power of s in the denominator and list, horizontally in the first 

row, every other coefficient. In the second row, list horizontally, starting with the next 

highest power of s, every coefficient that was skipped in the first row. 

 

Fig. 6.2 Equivalent closed-loop transfer function 

 

The remaining entries are filled in as follows. Each entry is a negative determinant of 

entries in the previous two rows divided by the entry in the first column directly above 



 CHAPTER 6             STABILITY OF CONTROL SYSTEM        ASST. LECTURER   AHMED SAAD 

4 

 

the calculated row. The left-hand column of the determinant is always the first column of 

the previous two rows, and the righthand column is the elements of the column above and 

to the right. The table is complete when all of the rows are completed down to s0. Table 

6.2 is the completed Routh table. Let us look at an example. 

 

Example 6.1 Examine the stability of the system in fig 6.3 using Routh’s method  

 

 

1 
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Table 6.3 has two sign changes in the first column. The first sign change occurs from 1 

in the s2 row to −72 in the s1 row. The second occurs from −72 in the s1 row to 103 in the 

s0 row. Thus, the system of Figure 6.3 is unstable since two poles exist in the right half-

plane. 

_____________________________________________________________________ 

6.3 Routh–Hurwitz Criterion: Special Cases 

Two special cases can occur: (1) The Routh table sometimes will have a zero only in 

the first column of a row, or (2) the Routh table sometimes will have an entire row that 

consists of zeros. Let us examine the first case. 

6.3.1 Zero Only in the First Column 

If the first element of a row is zero, division by zero would be required to form the 

next row. To avoid this phenomenon, an epsilon, ε, is assigned to replace the zero in the 

first column. The value ε is then allowed to approach zero from either the positive or the 

negative side, after which the signs of the entries in the first column can be determined. 

Let us look at an example. 

Example 6.2 Determine the stability of the closed-loop transfer function 

 

SOLUTION: 

The solution is shown in Table 6.4. We form the Routh table using the denominator of 

Eq. (6.2). Begin by assembling the Routh table down to the row where a zero appears only 

in the first column (the s3 row). Next replace the zero by a small number, ε, and complete 

the table. To begin the interpretation, we must first assume a sign, positive or negative, for 

the quantity ε. Table 6.5 shows the first column of Table 6.4 along with the resulting signs 

for choices of ε positive and ε negative. 
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lim
ԑ→+0

6𝜀−7

𝜀
= -∞=-  

lim
ԑ→+0

42𝜀−49−6𝜀

12𝜀−14
= +

−49

−14
= + 

 

If ε is chosen positive, Table 6.5 will show a sign change from the s3 row to the s2 row, 

and there will be another sign change from the s2 row to the s1 row. Hence, the system is 

unstable and has two poles in the right half-plane.  

____________________________________________________________________ 
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Another method that can be used when a zero appears only in the first column of a row. 

This method is usually computationally easier than the epsilon method just described. 

 

 

                                                                                                                   0 

 

________________________________________________________________ 

Example 6.3 Determine the stability of the closed-loop transfer function 

 

SOLUTION: 

First write a polynomial that has the reciprocal roots of the denominator of above Eq.  

D(s) = 3s5 + 5s4 + 6s3 + 3s2 + 2s + 1 

We form the Routh table as shown in Table 6.6 using D(s)Eq. the system is unstable and 

has two poles in the right half-plane.  
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6.3.2 Entire Row is Zero 

We now look at the second special case. Sometimes while making a Routh table, we 

find that an entire row consists of zeros because there is an even polynomial that is a factor 

of the original polynomial. This case must be handled differently from the case of a zero 

in only the first column of a row. Let us look at an example that demonstrates how to 

construct and interpret the Routh table when an entire row of zeros is present. 

___________________________________________________________________ 

Example 6.4 Determine the number of right-half-plane poles in the closed-loop 

transfer function 

 

SOLUTION: 

Start by forming the Routh table for the denominator of T(s) Eq. (see Table 6.7). At the 

second row, we multiply through by 1/7 for convenience. We stop at the third row, since 

the entire row consists of zeros, and use the following procedure. First we return to the row 

immediately above the row of zeros and form an auxiliary polynomial. 

P (s) = s4 + 6s2 + 8 

𝑑𝑝(𝑠)

𝑑𝑠
= 4s3 + 12s + 0 ÷ 4 = s3 +3s 

                                                            

Hence, there are no right-half-plane poles. 


