Tikrit university

Collage of Engineering Shirqat

Department of Electrical Engineering
Fourth Class
Control Engineering
Chapter 5
Lecture 11

Time domain response
Prepared by

Asst Lecturer. Ahmed Saad Names




CHAPTER 5 TIME DOMAIN RESPONSE ASST. LECTURER AHMED SAAD

5.6 ANALYSIS OF SECOND-ORDER SYSTEM

Figure 5.14 shows a general second-order system.

+ o

R(s) WEr2E0) > C(s)
Fig. 5.14 Second-order system
From Fig. 5.14
o
(s) = s(s+28m )
{"'{ }H’[ }_ L:
R0 (5.24)
0
s G stadste, w2
R() " 1+ G(s)H(s) |, @ s+2E0, +0]
s+ E.TE_\ w, (5 25)

Let us study the effect of pole location before finding the unit step response. To find
the poles of closed loop transfer function of Fig. 5.14, let us put

s +2sEo +w? =0

28 @ . J(2E » ) —4er}
R N e
5= — &, tw &1 -1

From Eq. (5.26), the following conclusions can be drawn:

(5.26)

(i) The poles are real and unequal if J&2 —1>0

e, &>1
(i1} The poles are real and equal if \JE*—1=10
e, E=1
(iii) The poles are real and complex conjugate if ,fE2 -1 <0
ie,E<l

where £ is known as damping factor.
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5. 7 Effect of £ On Second-Order System

Let us analyse the effect of €, on pole location as well as response of second-order
systems.

5.7.1 Effect of § on pole location

(1) Case 1: 0<&<

(a) The poles are complex conjugates of each other and are given by

5.5, = — Lo jo, & -1

(b) The poles are located on the second and third coordinates due to the existence of
both real and imaginary parts.

(c) The response is underdamped.

(i) Case 2: =1

(@) The poles are real and equal. The poles are s;=S,= -Ew,

(b) They lie on the negative a-axis.

(c) The response is critically damped

(i11) Case 3: §> 1

(a) The poles are real and unequal. These are given by

5.8, = — Ew T, 8 -1

(b) Since there are no imaginary terms (& > 1), the poles lie on the negative a-axis and at
unequal places.

(c) The response is overdamped.

(iv) Case 4: =0

(@) The poles are complex with only the imaginary part and lie on jw axis. The poles are
conjugates of each other.

(b) The poles are given by $;=S,= jw,

(c) The response is undamped.

(v) Case5:0>¢&>-1

(@) Since &, is negative, the poles are given by

55, = = B, £ jw, & -1
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(b) If real parts of poles are positive, the poles lie on the right half plane (RHP) of S-plane.
(c) This is an unstable condition.
(vi) Case 6: E=-1
(@) The poles are given by si, S, = Ewn, Ewn
(b) The poles are located in the RHP of S-plane.
(c) The system is unstable.
(vii)Case 7: £<-1
5.8, =— Ew, & w,JE -1
(a) The poles are given by
(b) The poles are located in the RHP of S-plane.
(c) The system is unstable

Figure 5.15 shows the location of poles for a second-order system for above cases
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/ (Poles 5-5', 7-7" are —ve£)
Left Half £=0 ht Half
< Plane (LHP) " p?;gne RHP) >

Fig. 5.15 Effect of £ on pole location

Figure 5.16 shows & and nature of response.
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Fig. 5.16 & and nature of response

5.7.2 Effect of £ on Nature of Response
Let us obtain the solution for response c (t) to a unit step input [r(t) = u(t)].

The Laplace transform of r(t) is given by

1
R(s) = -
YT (5.27)
Using Eq. (5.25), we get, from Eq (5.27),
w3 ?
C(s) = . R(s)= -
) (sz +2E,,mns+mﬁj %) s(s2+28m, s+ m?) (5.28)
Case 1: Underdamped Case (0 <¢< 1)
From Eq (5.28) it can be written as
1 s+28o,
cs) = s $2+28w,5+ 07}
£ o-Eout (5.29)

= l—e {cosw,t+ sin,f t = 1 ———=sin(w,1 + o)
s+ e smig| = 1 F5

Where ®? = ®*(1-§?). cosa=& sina=,/1-E (I=tan"—‘1£é2 (5.30)
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Fig. 5.17 Underdamped
Case 2: Critically Damped (= 1)
For critically damping the roots are real and equal. Substituting £ =1 in Eq. (5.28), we

get .
2
C(s) = - . =L—=1— @ __1
s(s*+20,5+07)  s(s+0,)) 5 (5+0,)} s+

n

(5.31)
c=1l-w e™t— e =1-(1+w,r)e

From Fig. 8.21 depicts c(t) versus t where c(t) has been given in equation (5.31).

>t

Fig. 5.18 Critically damped
Case 3: Overdamped Case (¢>1)
From Eq. (5.28),

c®)=1- {Ae{%%dﬁ]r - E_[@“"‘”H\’ﬁz_"]']
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Overdamped
response

>t

Fig. 5.19 Overdamped
(iv) Case 4: Undamped (& =0)
Substituting £ =0 in Eq. (5.28), we get

1 5

Cls) = 5(s? +mf,}_;- T+
c(fy=1-cos  t

(5.32)
4c(h

>t
Fig. 5.20 Undamped
Case 5: Negative Damping (0> ¢&>-1)
From Eq. (5.28)
i W A Bs+C
Cs) = s(s2+28 @ s+07) B s[(s—a)? +b?] B :+ (s—a)*+b?
where the polesare0,axjb(a,b>0).
c(t) = A + Be™ cos bt + Ce™ sin bt. (5.33)

Figure 5.21 shows the plot of c(t) versus t
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Fig. 5.21 Negative damping (0 >&>-1)

Case 6: Negative Damping (& =-1)

From Eq. (5.28), it can be written as

2 2 1 o 1
=—+

n i

C(s) =

S{Sl+2mn.f+m=2‘)=5(s—m")3_3 S[S_mn}z j._m"
c(t) = 1+t e —e =1+ (ot —1) e

(5.34)
4 c(h
>t
Fig. 5.22 Negative Damping (¢ = -1)
Case 7: Negative Damping (£ < -1)
From Eq. (5.28),
CE) =~ a2, 5, C
s(s2+25 o s+®) s(s—a)(s-b) s s-a s-b

c(t)y= A+ Be® + Ce™
4 c(d

Fig. 5.23 Negative damping (§<-1)
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5.8 Derivation of Time Response Specifications

Figure 5.2 shows the plot of c(t) versus t for unit step input and different transient
response specifications have also been pointed in Figure 5.2.

5.8.1 Delay Time (Tq)

The time required to reach 50% of output is known as delay time.

1
o(t) = 5 at t=T,

- 1+0.7¢
W, (5.35)
5.8.2 Rise Time (Tr)
Since the system is underdamped, therefore,
c)=1latt=T,

From Eq (5.29),

T,

T = ::[; o
d (5.36)
5.8.3 Peak Time (Tp)
nm

) (5.37)
The first over short is obtained for n = 1 and the second overshoot is obtained for n = 2,
5.8.4 Peak Overshoot (My)

esonle

M, = ﬁ Sin Ot (5.38)

%Mpz € J%XIUG (5.39)
5.8.5 Settling Time (Ts)
For a 2% criterion, T, =471

T, = 5::;," (5.40)

= T = time constant
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Time Specifications
SI. No.
Type Formula
, 1+0.7¢
1 Delay time g = -
W,
_ T—9
2 Rise time [, = :
11.'0.-
3 Peak time I, =
W,
4 Maximum overshoot 1 ’fp (%) =100x e =22
o 4
5 Settling time ==
S Wy
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Example 5.2:
A system has G(s) = : 20/ (s* + 55 + 5) and umty feedback. Find (i) w,, (ii) €, (iii) w, ()T,

(V) T, (vi) T,, (vii) M,,, and (viii) T

20
: C(s) G(s) 245545 20
I - - _
Slesion R(s) ~ 1+G()H(s) ,,_ 20 2455425
s245545

(1) Since the numerator may not be ®,_ 2 due to the existence of a constant term in denominator of G(s), (“,.2
must be compared wnh the denommator of C(s)/R(s) only.
=25 orw, =5 rad/sec

5 5
1 — e —— e < S———" 05
(i) 26w =5 org 20, 2x5
(1i1) 0,=0 /- = 5x+/1-0.5? =4.33 rad/sec
(iv) T,= 1+0.7¢ _1+0.7x05 =027 sec
w, 5
) T = M=o
o,
’ 2 , — 2
= tan™! ——— § an™' —I——OL =1.0467 rad
0.5
T = n—_lw =0.4834
S
(vi) T,= 23045925 sec
w, 433
-y 053,14
(vii) M, =100 x e V= =100 x e Yo% =16.32%
4 4
- =——=].6secC
byl L= %, 055
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