- Frequency is the rate of change with respect to time.
- Change in a short span of time means high frequency.
- Change over a long span of time means low frequency.

Example Two signals with the same amplitude and phase, but different frequencies

a. A signal with a frequency of 12 Hz

b. A signal with a frequency of 6 Hz

Fourier Analysis

The subject of Fourier analysis is essential for describing certain types of systems and their properties in frequency domain. It is concerned with representing a signal as weighted superposition of complex sinusoids. The complex sinusoids are basic signals that can be used to construct a broad and useful class of signals. There are four distinct Fourier representations:

- Continuous-time Fourier series,
- Discrete-time Fourier series,
- Continuous-time Fourier transform,
- Discrete-time Fourier transform.

Fourier Series (FS)

Fourier series converts the time-domain signals into frequency-domain (or spectral) representations. Fourier series is a means to represent a *periodic signal* as an infinite sum of sine wave components. A periodic signal is just a signal that repeats its pattern at some period. The primary reason that we use Fourier series is that we can better analyze a signal in another domain rather in the original domain. A continuous-time signal x(t) to be periodic if there is a positive nonzero value of T for which

$$x(t+T) = x(t) \qquad all t$$

The fundamental period T_o of x(t) is the smallest positive value of T for which above Eq. is satisfied, and $1/T_o = f_o$ is referred to as the fundamental frequency. Two basic examples of periodic signals are the real sinusoidal signal and the complex exponential signal

$$x(t) = A \cos(\omega_0 t + \varphi) \qquad ; \qquad x(t) = e^{j\omega_0 t}$$

where $\omega_0 = 2\pi / T_o = 2\pi f_o$ is called the fundamental angular frequency.

Review Example/

What are the magnitude, frequency and phase of the following sinusoidal signal? $x(t)=10 \cos (10\pi t + \pi/4)$?

Solution: A=10; f=5 Hz, $\varphi = \pi/4$,

The complex exponential Fourier series representation of a periodic signal x(t) with fundamental period T_o is given by

$$x(t) = \sum_{k=-\infty}^{\infty} c_k \ e^{jk\omega t} \qquad \qquad \omega = \frac{2\pi}{T}$$

where c_k are known as the complex Fourier coefficients and are given by

$$c_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \ e^{-jk\omega t} \ dt$$
$$c_0 = \frac{1}{T} \int_0^T x(t) \ dt$$

which indicates that c_0 equals the average value of x(t) over a period. When x(t) is real, then

$$c_{-k} = c_k^*$$

where the asterisk indicates the complex conjugate.

To find the Fourier coefficients of periodic x(t):

1. - For a given k, multiply x(t) by $e^{-jk\omega t}$, and take the area under the curve (dividing by **T**).

2. - Repeat step (1) for all k.

Setting *k*=0;

Example:- Fourier Series

Example : Determine the complex exponential Fourier series representation for the following signal: $x(t) = cos(\omega t)$ Solution : we can write the cos signal as below and compare it with general equation

$$\cos \omega_0 t = \frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right) = \frac{1}{2} e^{-j\omega_0 t} + \frac{1}{2} e^{j\omega_0 t} = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

The complex Fourier coefficients for *cos(wt)* are

$$c_1 = \frac{1}{2}$$
 , $c_{-1} = \frac{1}{2}$, $c_k = 0$ for k $\neq \pm 1$

Example : Find FS for $x(t) = sin(3\pi t + \pi/2)$

$$egin{aligned} x(t) &= \sin(3\pi t + rac{\pi}{2}) = rac{e^{j(3\pi t + rac{\pi}{2})} - e^{-j(3\pi t + rac{\pi}{2})}}{2j} \ &= rac{1}{2j} e^{j3\pi t} e^{jrac{\pi}{2}} - rac{1}{2j} e^{-j3\pi t} e^{-jrac{\pi}{2}} \end{aligned}$$

We have:

$$egin{aligned} &rac{1}{2j}(j)e^{j3t\pi}-rac{1}{2j}(-j)e^{-j3t\pi}
ightarrowrac{1}{2}e^{(1)j3t\pi}+rac{1}{2}e^{(-1)j3t\pi}\ &egin{aligned} &egi$$

Since:

•
$$e^{jrac{\pi}{2}} = j$$

• $e^{-jrac{\pi}{2}} = -j$

Compare with
$$\sum_{k=-\infty}^{\infty} c_k e^{jk\omega t}$$

Note that : $x(t) = \sin(3\pi t + \pi/2) = \cos(3\pi t)$.

Trigonometric Fourier Series:

T

The trigonometric Fourier series representation of a periodic signal x(t) with fundamental period T, is given by

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos k\omega t + b_k \sin k\omega t) \qquad \omega =$$

where a_k , and b_k , are the Fourier coefficients given by

$$a_0 = \frac{2}{T} \int_0^T x(t) dt$$

$$a_k = \frac{2}{T} \int_0^T x(t) \cos k\omega t \, dt \qquad b_k = \frac{2}{T} \int_0^T x(t) \sin k\omega t \, dt$$

The coefficients a_k , and b_k , and the complex Fourier coefficients c_k , are related by $c_0 = \frac{a_0}{a_1} \qquad a_1 = c_1 + c_2 \qquad b_1 = i(c_1)$

$$c_0 = \frac{a_0}{2}$$
, $a_k = c_k + c_{-k}$, $b_k = j(c_k - c_{-k})$

From these equations we can obtain

$$c_k = \frac{1}{2}(a_k - jb_k)$$
 and $c_{-k} = \frac{1}{2}(a_k + jb_k)$

When x(t) is real, then a_k , and b_k , are real and we have

$$a_k = 2 \operatorname{Re}[c_k]$$
, $b_k = -2 \operatorname{Im}[c_k]$

Fourier Series - Example

Example: Find the Complex Exponential **FS** coefficients for **f(t)** shown

Solution:
$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos k\omega t + b_k \sin k\omega t)$$

This wave repeats every $T = 2\pi$ seconds.

$$a_0 = \frac{2}{T} \int_0^T x(t) dt = \frac{2}{2\pi} \int_0^{2\pi} x(t) dt$$

Given that f(t) is symmetric around zero, the positive and negative areas cancel out. So: $a_0=0$

$$a_{k} = \frac{2}{T} \int_{0}^{T} x(t) \cos k\omega t \, dt = \frac{1}{\pi} \left(\int_{0}^{\pi} 1 \cdot \cos(kw \cdot t) \, dt + \int_{\pi}^{2\pi} -1 \cdot \cos(kw \cdot t) \, dt \right)$$

This results $a_{k}=0$ for all kw (by symmetry and integration).

$$b_k = \frac{2}{T} \int_0^T x(t) \sin k\omega t \, dt = 2 \quad \frac{1}{\pi} \left(\int_0^\pi 1 \cdot \sin(kw \cdot t) \, dt + \int_\pi^{2\pi} -1 \cdot \sin(kw \cdot t) \, dt \right)$$

Even and Odd Signals:

If a periodic signal x(t) is even, then $b_k = 0$ and its Fourier series contains only cosine terms:

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos k\omega t \qquad \qquad \omega = \frac{2\pi}{T}$$

If x(t) is odd, then $a_k = 0$ and its Fourier series contains only sine terms:

$$x(t) = \sum_{k=1}^{\infty} b_k \sin k\omega t \qquad \qquad \omega = \frac{2\pi}{T}$$

Fourier Series - Example

Another form of the Fourier series representation of a real periodic signal x(t) with fundamental period T is the harmonic form Fourier series of x(t) which is given by

$$x(t) = C_0 + \sum_{k=1}^{\infty} C_k \cos(k\omega t - \theta_k) \qquad \omega = \frac{2\pi}{T}$$

The term C_o is known as the dc component, and the term $C_o cos(k\omega t - \theta_k)$ is referred to as the *kth* harmonic component of x(t). The first harmonic component $C_1 cos(\omega t - \theta_l)$ is commonly called the *fundamental component* because it has the same fundamental period as x(t). The coefficients C_k and the angles θ_k are called the harmonic amplitudes and phase angles, respectively, and they are related to the Fourier coefficients a_k , and b_k , by

$$C_0 = \frac{a_0}{2}$$
 $\theta_k = tan^{-1}\frac{b_k}{a_k}$

Note : The FS coefficients are known as a frequency domain representation of x(t) because it is the coefficient associated with complex sinusoid at frequency $k\omega$.

Amplitude and Phase Spectra of a Periodic Signal

The complex form for Fourier series shown below is more general and usually more convenient

$$x(t) = \sum_{k=-\infty}^{\infty} C_k e^{jk\omega t} \qquad \qquad \omega = \frac{2\pi}{T}$$

$$C_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \ e^{-jk\omega t} \ dt$$

Let the complex Fourier coefficients C_k in above Eq. be expressed as

$$C_k = |C_k| \ e^{j\varphi_k}$$

Where a plot of $|C_k|$ versus the angular frequency ω is called the *amplitude spectrum* of the periodic signal x(t), and a plot of φ versus ω is called the *phase spectrum* of x(t). Since the index k assumes only integers, the amplitude and phase spectra are not continuous curves but appear only at the discrete frequencies $k\omega$. They are therefore referred to as **discrete frequency** spectra or line spectra. For a real periodic signal x(t) we have $C_{-k} = C_k^*$. Thus

$$|C_{-k}| = |C_k| \qquad \varphi_{-k} = -\varphi_k$$

Hence, the **amplitude spectrum** is an **even** function of ω , and the **phase spectrum** is an **odd** function of ω for a real periodic signal.

Amplitude and Phase Spectra of a Periodic Signal

Example Calculate the FS coefficients for the impulse train and plot the magnitude of its frequency spectrum (which are simply the Fourier Series coefficients). $p(t) = \sum_{k=1}^{\infty} \delta(t - kT_0)$

Solution

$$C_{k} = \frac{1}{T_{0}} \int_{T_{0}}^{T} p(t) e^{-jk\omega_{0}t} dt$$
$$= \frac{1}{T_{0}} \int_{\frac{-T_{0}}{2}}^{\frac{T_{0}}{2}} \delta(t) e^{-jk\omega_{0}t} dt$$
$$= \frac{1}{T_{0}} = C_{k}, \forall k$$

Power Content of a Periodic Signal: Parseval's theorem

As mentioned before, the average power of a periodic signal x(t) over any period can be expressed as

$$P = \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$$

If x(t) is represented by the complex exponential Fourier series, then it can be shown that

$$\frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |C_k|^2$$

EE313 - Analog Communication Systems I

Above equation is called **Parseval's identity (or Parseval's theorem**) for the Fourier series.

Example

Example/ Determine the FS coefficients for the signal x(t) depicted in Figure below. Derive analytical expressions and plot, the double-sided magnitude, phase, and power spectra.

Solution:

 $T = 2 \operatorname{sec}, \ \omega = 2\pi/T = \pi \ rad$

Step 1: Determine *T* and ω . Step 2: Solve for C_k . Step 3: Plot magnitude, phase and power spectrum

$$C_{k} = \frac{1}{T} \int_{0}^{T} x(t) \ e^{-jk\omega t} \ dt = \frac{1}{2} \int_{0}^{2} e^{-2t} \ e^{-jk\pi t} \ dt = \frac{1}{2} \int_{0}^{2} e^{-(2+jk\pi)t} \ dt$$
$$C_{k} = \frac{1}{2} \left[\left\{ \frac{-e^{-(2+jk\pi)t}}{2+jk\pi} \right\}_{0}^{2} \right] = \frac{1}{2} \left[\left\{ \frac{-e^{-4-j2k\pi}+1}{2+jk\pi} \right\} \ dt = \frac{1-e^{-4}}{4+j2k\pi} \qquad \text{since we have} \quad e^{\pm j2k\pi} = 1$$

Analytical expressions for magnitude and phase spectra:

$$C_{k} = \frac{1 - e^{-4}}{4 + j2k\pi} \times \frac{4 - j2k\pi}{4 - j2k\pi} = \frac{(4 - 4e^{-4}) + j(e^{-4}2\pi k - 2\pi k)}{4^{2} + (2k\pi)^{2}}$$
$$= \frac{(4 - 4e^{-4})}{4^{2} + (2k\pi)^{2}} + j\frac{(e^{-4}2\pi k - 2\pi k)}{4^{2} + (2k\pi)^{2}}$$
Note that $|a \pm jb| = \sqrt{a^{2} + b^{2}}$

Example-

$$\begin{aligned} Magnitude &= |C_k| = \sqrt{Re^2 + Im^2} = \left| \frac{(1 - e^{-4})}{4 + j2k\pi} \right| = \frac{|1 - e^{-4}|}{\sqrt{4^2 + (2k\pi)^2}} \\ Phase &= \varphi_k = tan^{-1}(\frac{Im}{Re}) = tan^{-1}\left(\frac{e^{-4}2\pi k - 2\pi k}{(4 - 4e^{-4})}\right) = tan^{-1}(\frac{-2\pi k + 1 = e^{-4})}{4(1 - e^{-4})}) = tan^{-1}(\frac{\pi k}{2}) \end{aligned}$$

Magnitude spectrum $|c_k|$ Phase spectrum arg{ c_k }= tan⁻¹ (c_k) = tan⁻¹ ($2\pi k/4$) Power spectrum $|c_k|^2$

k	$ c_k $	ϕ_{rad}	$ c_k ^2$
-5	0.0310	1.4441	0.0010
-4	0.0386	1.4130	0.0015
-3	0.0509	1.3617	0.0026
-2	0.0744	1.2626	0.0055
-1	0.1318	1.0039	0.0174
0	0.2454	0	0.0602
1	0.1318	-1.0039	0.0174
2	0.0744	-1.2626	0.0055
3	0.0509	-1.3617	0.0026
4	0.0386	-1.4130	0.0015
5	0.0310	-1.4441	0.0010

EE313 - Analog Communication Systems I