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.1.6 Equations of Motion: Cylindrical Coordinates  

When all the forces acting on a particle are resolved into cylindrical components, 

i.e., along the unit-vector directions ur, uθ, uz, Fig. 1–16, the equation of motion 

can be expressed as: 

 

 

∑F = ma 

∑Frur + ∑Fθu θ+ ∑Fzuz = marur + maθuθ + mazuz 

To satisfy this equation, we require  

 

                    (1-9) 

                                                                                                                     

 

If the particle is constrained to move only in the r-θ plane, then only the first two of 

Eq. 1–9 are using to specify the motion. 

 

 

∑Frur = marur 

∑Fθuθ = maθuθ 

∑Fzuz = mazuz 
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Tangential and Normal Forces. The most straight forward type of problem involving 

cylindrical coordinates requires the determination of the resultant force components 

∑Fr, ∑F𝜃, ∑Fz which, cause a particle to move with a known acceleration. If, however, 

the particle’s accelerated motion is not completely specified at the given instant, 

then some information regarding the directions or magnitudes of the forces acting 

on the particle must be known or calculated in order to solve Eqs. 1-9 For example, 

the force P causes the particle in Fig. 1–17a to move along a path r = f(θ). The normal 

force N that the path exerts on the particle is always perpendicular to the tangent of 

the path, whereas the frictional force F always acts along the tangent in the opposite 

direction of motion. The directions of N and F can be specified relative to the radial 

coordinate by using the angle 𝜓 (psi), Fig.1-17b, which is defined between the 

extended radial line and the tangent to the curve 

 

 

This angle can be obtained by noting that when the particle is displaced a distance 

dS along the path, Fig. 1–17c, the component of displacement in the radial direction 

is dr and the component of displacement in the transverse direction is r dθ.  
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c 

Since these two components are mutually perpendicular, the angle c can be 

determined from tan 𝜓 = r dθ/dr, or  

                                                                   (1-10) 

If 𝜓 is calculated as a positive quantity, it is measured from the extended radial line 

to the tangent in a counterclockwise sense or in the positive direction of θ. If it is 

negative, it is measured in the opposite direction to positive θ. For example, consider 

the cardioid r = a(1 + cos θ), shown in Fig. 1–18. Because dr/dθ = -a sin θ, then when 

θ = 30, tan 𝜓 = a(1 + cos 30)/(-a sin 30) = -3.732, or 𝜓 = -75, measured clockwise, 

opposite to +θ as shown in the figure 1-18. 

 

Fig. 1-18 

tan 𝜓= 
𝑟

𝑑𝑟/𝑑𝜃
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Procedure for Analysis 

Cylindrical or polar coordinates are a suitable choice for the analysis of a problem for 

which data regarding the angular motion of the radial line r are given, or in cases 

where the path can be conveniently expressed in terms of these coordinates. Once 

these coordinates have been established, the equations of motion can then be 

applied in order to relate the forces acting on the particle to its acceleration 

components. The method for doing this has been outlined in the procedure for 

analysis given in the following is a summary of this procedure. 

Free-Body Diagram. 

 Establish the r, θ, z inertial coordinate system and draw the particle’s free-

body diagram. 

 Assume that ar, aθ, az act in the positive directions of r, θ, z if they are 

unknown. 

 Identify all the unknowns in the problem. 

Equations of Motion. 

 Apply the equations of motion, Eq. 1–9. 

Kinematics. 

 Use the methods to determine r and the time derivatives r,̇ r,̈ θ̇, θ,̈ z ̈and then 

evaluate the acceleration components ar =r̈-rθ̇2, aθ = r θ̈+2ṙ θ̇, aZ=z̈ 

 If any of the acceleration components is computed as a negative quantity, it 

indicates that it acts in its negative coordinate direction. 

 When taking the time derivatives of r = f(θ), it is very important to use the 

chain rule of calculus, which is discussed in Appendix C 
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CHAPTER REVIEW 

Kinetics 
Kinetics is the study of the relation between forces and the 
acceleration they cause. This relation is based on Newton’s 
second law of motion, expressed mathe -matically as ∑F= 
ma. Before applying the equation of motion, it is important 
to first draw the particle’s free-body diagram in order to 
account for all of the forces that act on the particle. 
Graphically, this diagram is equal to the kinetic diagram, 
which shows the result of the forces, that is, the ma vector 

 

 
 

Inertial Coordinate Systems 
When applying the equation of motion, it isimportant to 
measure the acceleration from an inertial coordinate 
system. This system has axes that do not rotate but are 
either fixed or translate with a constant velocity. Various 
types of inertial coordinate systems can be used to apply 
 ∑F = ma , in component form. 
 

 

 
Force components 
Rectangular x, y, z axes are used to describe the motion 
along each of the axes. 

 
∑ Fx = max, ∑ Fy = may, ∑ Fz = maz 

Normal, tangential, and binormal axes n, t, b,  
are often used when the path is known. Recall that an is 
always directed in the +n direction. It indicates the change 
in the velocity direction. also recall that a t is tangent to the 
path. It indicates the change in the velocity magnitude. 

 
∑Ft = mat, ∑Fn = man, ∑Fb = 0 

t = dv/dt or at = v dv/ds 

𝜌 = [1 + (
dy

dx
)2]3 /2 /| 

d2y

dx2| 

an= (
𝑣2

𝜌
) 

Cylindrical coordinates  
are useful when angular motion of the radial line r is 
specified or when the path can conveniently be described 
with these coordinates 

 

∑Fr = m(r̈ − rθ̇2) 

∑Fθ = m(rθ̈+2ṙθ̇) 

∑Fz=mz̈ , tan 𝜓= 
𝑟

𝑑𝑟/𝑑𝜃
 

Central-Force Motion 
When a single force acts upon a particle, such as during the free-flight trajectory of a satellite in a 
gravitational field, then the motion is referred to as central-force motion. The orbit depends upon the 
eccentricity e; and as a result, the trajectory can be either circular, parabolic, elliptical, or hyperbolic. 
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PROBLEM.27: The smooth 0.5-kg double-collar in Fig. 1-19a can freely slide on arm 

AB and the circular guide rod. If the arm rotates with a constant angular velocity of 

θ̇ = 3 rad/s, determine the force the arm exerts on the collar at the 

instant θ = 45. Motion is in the horizontal plane. 

SOLUTION 

Free-Body Diagram. The normal reaction NC of the circular guide 

rod and the force F of arm AB act on the collar in the plane of 

motion, Fig. 1-19b. Note that F acts perpendicular to the axis of 

arm AB, that is, in the direction of the u axis, while NC acts 

perpendicular to the tangent of the circular path at θ = 450. The 

four unknowns are NC, F, ar, aθ.  

Equations of Motion. 

(+↗)  ∑Fr = mar;  - NC cos θ = m ar                                                 

- NC cos 45 = 0.5 ar                                                                                       1 

(+↖)  ∑Fθ = maθ;   F - NC sin θ = maθ                           

F - NC sin 45 = 0.5aθ                               2 

Kinematics. Using the chain rule (see Appendix C), the first and second time 

derivatives of r when θ = 45,   θ̇= 3 rad/s, are 

r= 0.8 cos θ = 0.8 cos 45 = 0.5657 m 

ṙ = -0.8 sin θ. θ̇ = -0.8 sin 45(3) = -1.6971 m/s 

�̈� = -0.8 sin θ. θ̈ - cos θ. θ̇2= -0.8sin 45(0) -0.8 cos 45(32) = -5.091 m/s2 

But we have 

ar = r̈ - r θ̇2= -5.091 - (0.5657)(3)2 = -10.18 m/s2 

aθ = rθ̈ + 2ṙ θ̇ = (0.5657)(0) + 2(-1.6971 )(3) = -10.18 m/s2  

Substituting these results into Eqs. (1) and (2) and solving, we get 

NC = 7.20 N, F ≈ 0 
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PROPLEM.28: The smooth 2-kg cylinder C in Fig. 1-20a has a pin P 

through its center which passes through the slot in arm OA. If the 

arm is forced to rotate in the vertical plane at a constant rate        

θ̇= 0.5 rad/s, determine the force that the arm exerts on the peg 

at the instant θ = 60. 

SOLUTION 

Free-Body Diagram. The free-body diagram for the cylinder is 

shown in Fig. 1-20b. The force on the peg, FP, acts perpendicular 

to the slot in the arm. As usual, ar and aθ are assumed to act in the 

directions of positive r and θ, respectively. Identify the four 

unknowns. 

 Equations of Motion. Using the data in Fig. 1–20b, we have 

(+↙)  ∑Fr= mar;  mg sinθ- NC sinθ = mar ⇒ 

19.6 (0.86)-NC(0.86) = 2ar                                                                                       (1) 

(+↘) ∑Fθ= maθ; mg cosθ-NC cosθ =maθ  ⇒  

19.6(0.5) - NC(0.5) = 2aθ                                                                                           (2) 

Kinematics. From Fig. 1–20a, r can be related to θ by the equation 

r =0.4 cscθ ⇒ Since d(cscθ) = -(cscθ cot θ)dθ and d(cotθ) = -(csc2θ) dθ, then r and the 

necessary time derivatives become 

r= 0.4 cscθ ⇒  r= 0.4616 m andṙ =- 0.4 cscθ cotθ. θ̇ ⇒ ṙ = -1.333 m/s 

r̈ = -0.4[(cscθ cotθ)( θ ̈ )+θ̇(cscθ.(-csc2θ) θ̇+ cot θ(- cscθ. cotθ)θ̇] 

r̈ = 0.4 cscθ. θ̇2[csc2θ+.cot2θ.)]= 0.4(1.154)(0.5)2[ (1.154)2+ (0.577)2] = 0.192 m/s2 ,  
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ar = r̈-rθ̇2= 0.192-0.4616(0.5)2= 0.77m/s2, aθ = rθ̈+2ṙθ̇ = 2(-1.333)(0.5) = -1.333m/s2 

Substituting these results into Eqs. 1 and 2 with θ = 60 and solving yields 

NC = 19.4 N, FP = -0.356 N 


